第第 3 3 节节 实验中的误差和有效数字实验中的误差和有效数字 第第 4 4 节节 科学测量:做直线运动物体的瞬时速度科学测量:做直线运动物体的瞬时速度 学习目标要求 核心素养和关键能力 1.知道误差有效数字的概念,能分析判断 偶然误差和,第2课时直线的两点式和一般式方程 学习目标1.掌握直线方程
2.3直线的参数方程 学案含答案Tag内容描述:
1、第第 3 3 节节 实验中的误差和有效数字实验中的误差和有效数字 第第 4 4 节节 科学测量:做直线运动物体的瞬时速度科学测量:做直线运动物体的瞬时速度 学习目标要求 核心素养和关键能力 1.知道误差有效数字的概念,能分析判断 偶然误差和。
2、第2课时直线的两点式和一般式方程学习目标1.掌握直线方程的两点式及截距式,并理解它们存在的条件.2.理解直线方程的一般式的特点与方程其它形式的区别与联系.3.会直线方程的一般式与其它形式之间相互转化,进一步掌握求直线方程的方法知识点一直线方程的两点式直线方程的两点式名称已知条件示意图方程使用范围两点式P1(x1,y1),P2(x2,y2),其中x1x2,y1y2斜率存在且不为0知识点二直线方程的截距式直线方程的截距式名称已知条件示意图方程使用范围截距式在x,y轴上的截距分别为a,b,且a0,b01斜率存在且不为0,不过原点知识点三直线的一。
3、第三节从自由落体到匀变速直线运动课时1匀变速直线运动的速度公式和位移公式学习目标 1.掌握匀变速直线运动的速度公式和位移公式,并会应用公式进行有关计算.2.掌握并会推导匀变速直线运动的两个推论,并能进行有关的计算.3.理解公式中各物理量的物理意义及符号的确定一、匀变速直线运动规律(1)速度公式:vtv0at.(2)位移公式:sv0tat2.二、用vt图象求位移在匀速直线运动与匀变速直线运动的vt图象中,图线和坐标轴所围的面积等于物体运动的位移1判断下列说法的正误(1)公式vtv0at适用于任何做直线运动的物体()(2)公式sv0tat2既适用于匀加速。
4、2.2.2直线方程的几种形式第1课时直线的点斜式方程学习目标1.掌握直线的点斜式方程和直线的斜截式方程.2.结合具体实例理解直线的方程和方程的直线概念及直线在y轴上的截距的含义知识点一直线的点斜式方程点斜式已知条件点P(x0,y0)和斜率k图示方程形式yy0k(xx0)适用条件斜率存在思考经过点P0(x0,y0)的所有直线是否都能用点斜式方程来表示?答案斜率不存在的直线不能用点斜式表示,过点P0且斜率不存在的直线为xx0.知识点二直线的斜截式方程1直线的斜截式方程斜截式已知条件斜率k和直线在y轴上的截距b图示方程式ykxb适用条件斜率存在2.直线。
5、第第 2 课时课时 直线的极坐标方程直线的极坐标方程 学习目标 1.掌握直线的极坐标方程.2.能熟练进行曲线的极坐标方程和直角坐标方程间的 互化.3.能用极坐标方程解决相关问题 知识点 直线的极坐标方程 思考 1 直线 l 的极坐标方程 f(,)0 应该有什么要求? 答案 直线 l 上任意一点 M 至少有一个极坐标适合方程 f(,)0; 以 f(,)0 的解为坐标的点都在直线 l 上 思考 2 。
6、 9.1 直线的方程直线的方程 最新考纲 考情考向分析 1.在平面直角坐标系中,结合具体图形,确定直线 位置的几何要素. 2.理解直线的倾斜角和斜率的概念,掌握过两点的 直线斜率的计算公式. 3.掌握确定直线位置的几何要素,掌握直线方程的 几种形式(点斜式、斜截式、截距式、两点式及一般 式),了解斜截式与一次函数的关系. 以考查直线方程的求法为主,直线的 斜率、倾斜角也是考查的重点题型 主要在解答题中与圆、圆锥曲线等知 识交汇出现,有时也会在选择、填空 题中出现. 1直线的倾斜角 (1)定义:当直线 l 与 x 轴相交时,取 x 轴作为基准。
7、第2课时直线方程的两点式和一般式学习目标1.掌握直线方程的两点式和一般式.2.了解平面直角坐标系中任意一条直线都可以用关于x,y的二元一次方程来表示.3.能将直线方程的几种形式进行互相转换,并弄清各种形式的应用范围.知识点一直线方程的两点式名称已知条件示意图方程使用范围两点式P1(x1,y1),P2(x2,y2),其中x1x2,y1y2斜率存在且不为0知识点二直线方程的截距式名称已知条件示意图方程使用范围截距式在x,y轴上的截距分别为a,b且a0,b01斜率存在且不为0,直线不过原点知识点三直线方程的一般式1.一般式方程形式AxByC0条件A,B不同。
8、第2课时直线的点斜式方程学习目标 1掌握直线的点斜式方程和直线的斜截式方程2结合具体实例理解直线的方程和方程的直线概念及直线在y轴上的截距的含义3会根据斜截式方程判断两直线的位置关系知识链接下列说法中,若两条不重合的直线平行,则它们的斜率相等;若两直线的斜率相等,则两直线平行;若两直线垂直,则其斜率之积为1;若两直线的斜率之积为1,则它们互相垂直正确的有_答案预习导引1直线的点斜式方程名称已知条件示意图方程使用范围点斜式点P(x0,y0)和斜率kyy0k(xx0)斜率存在的直线2.直线l在坐标轴上的截距(1)直线在y轴上的截距:。
9、2.3直线与圆、圆与圆的位置关系第1课时直线与圆的位置关系学习目标1.掌握直线与圆的三种位置关系:相交、相切、相离.2.会用代数法和几何法来判定直线与圆的三种位置关系.3.会用直线与圆的位置关系解决一些实际问题.知识点直线AxByC0与圆(xa)2(yb)2r2的位置关系及判断位置关系相交相切相离公共点个数2个1个0个判定方法几何法:设圆心到直线的距离为ddr代数法:由消元得到一元二次方程,可得方程的判别式0001.若直线与圆有公共点,则直线与圆相交.()2.如果直线与圆组成的方程组有解,则直线和圆相交或相切.()3.若圆心到直线的距离大于半径,。
10、2.2.2 直线的两点式方程直线的两点式方程 课标要求 素养要求 1.根据确定直线位置的几何要素,探索并掌握 直线的两点式方程. 2.了解直线的截距式方程的形式特征及适用 范围. 通过学习直线的两点式及截距式 方程,提升数学抽象及逻辑推理 。
11、2.2.3 直线的一般式方程直线的一般式方程 课标要求 素养要求 1.根据确定直线位置的几何要素,探索 并掌握直线方程的一般式. 2.会进行直线方程的五种形式间的转化. 通过学习直线的一般式方程,提升数学 抽象及逻辑推理素养. 自主梳理 1。
12、72直线的方程72.1直线的一般方程学习目标 1.了解直线的方程与方程的直线的概念和关系2.了解平面直角坐标系中任意一条直线都可以用关于x,y的二元一次方程来表示.3.理解直线的一般式方程的特点,掌握求直线一般方程的方法预习导引1方程的图象一般地,对任意一个二元方程f(x,y)0,以这个方程的某一组解(x,y)为坐标,有唯一一个点与之对应,所有这些点组成的集合称为这个方程的图象2定理1任意一个二元一次方程AxByC0(A,B不全为0)的图象是与n(A,B)垂直的一条直线3直线的一般式方程(1)方程:AxByC0;(2)法向量:如果非零向量n与直线l垂直,。
13、3匀变速直线运动位移与时间的关系 学习目标1.理解匀变速直线运动位移与时间的关系,会用位移公式xv0tat2解决匀变速直线运动的问题.2.知道vt图像中的“面积”与位移的对应关系,并会用此关系推导位移和时间关系式 匀变速直线运动位移与时间的关系 1利用vt图像求位移(如图1) 图1 vt图像中,对应时间t的速度图像与两个坐标轴所围成的梯形面积,在数值上等于在时间t内的位移值 2匀变速直线运动的位移。
14、2.2 直线的方程直线的方程 2.2.1 直线的点斜式方程直线的点斜式方程 课标要求 素养要求 1.根据确定直线位置的几何要素,探索并掌握直 线的点斜式方程与斜截式方程. 2.会利用直线的点斜式方程与斜截式方程解决有 关问题. 通过推导直线。
15、第第 2 课时课时 参数方程和普通方程的互化参数方程和普通方程的互化 学习目标 1.了解参数方程化为普通方程的意义.2.掌握参数方程化为普通方程的基本方法. 3.能根据参数方程与普通方程的互化灵活解决问题 知识点 参数方程和普通方程的互化 思考 1 要判断一个点是否在曲线上,你觉得用参数方程方便还是用普通方程方便? 答案 用普通方程比较方便 思考 2 把参数方程化为普通方程的关键是什么? 答案 。
16、1.2直线的方程第1课时直线方程的点斜式学习目标1.了解由斜率公式推导直线方程的点斜式的过程.2.掌握直线的点斜式方程与斜截式方程.3.会利用直线的点斜式与斜截式方程解决有关的实际问题.知识点一直线方程的点斜式点斜式已知条件点P(x0,y0)和斜率k图示方程形式yy0k(xx0)适用条件斜率存在思考经过点P0(x0,y0)的所有直线是否都能用点斜式方程来表示?答案斜率不存在的直线不能用点斜式表示,过点P0斜率不存在的直线为xx0.知识点二直线方程的斜截式斜截式已知条件斜率k和直线在y轴上的截距b图示方程式ykxb适用条件斜率存在1.直线的点斜式方。
17、2.2直线的方程22.1直线方程的概念与直线的斜率学习目标1.了解直线的方程、方程的直线的概念.2.理解直线的倾斜角、斜率,掌握过两点的直线的斜率公式.3.体会用斜率和倾斜角刻划直线的倾斜程度,并掌握它们之间的关系知识点一直线的方程与方程的直线1两个条件(1)以一个方程的解为坐标的点都在某条直线上(2)这条直线上的点的坐标都是这个方程的解2一个结论这个方程叫做这条直线的方程,这条直线叫做这个方程的直线知识点二直线的倾斜角与斜率名称斜率倾斜角定义直线ykxb中的系数k叫做这条直线的斜率x轴正向与直线向上的方向所成的角叫做这条。
18、二二 圆锥曲线的参数方程圆锥曲线的参数方程 学习目标 1.掌握椭圆的参数方程及应用.2.了解双曲线、抛物线的参数方程.3.能够利用圆锥 曲线的参数方程解决最值、有关点的轨迹问题 知识点一 椭圆的参数方程 思考 1 圆 x2y2r2的参数方程 xrcos , yrsin 的参数 的几何意义是什么? 答案 是点(rcos ,rsin )绕点 O 逆时针旋转的旋转角 思考 2 对于椭圆x 2 a。
19、一一 曲线的参数方程曲线的参数方程 第第 1 课时课时 参数方程的概念及圆的参数方程参数方程的概念及圆的参数方程 学习目标 1.理解曲线参数方程的有关概念.2.掌握圆的参数方程.3.能够根据圆的参数方程 解决最值问题 知识点一 参数方程的概念 思考 在生活中,两个陌生的人通过第三方建立联系,那么对于曲线上点的坐标(x,y),直 接描述它们之间的关系比较困难时,可以怎么办呢? 答案 可以引入参数,。
20、三三 直线的参数方程直线的参数方程 学习目标 1.理解并掌握直线的参数方程.2.能够利用直线的参数方程解决有关问题 知识点 直线的参数方程 思考 1 如图, 直线 l 过定点 M0(x0,y0)且倾斜角为 2 ,那么直线的点斜式方程是什么? 答案 yy0tan (xx0) 思考 2 在思考 1 中,若令 xx0tcos (t 为参数),那么直线 l 的参数方程是什么? 答案 xx0t。