12.1二次根式第2课时二次根式的性质课堂达标练习含答案解析

第 3 课时 二次函数 ya(xh) 2k 的图象与性质知识点 1 二次函数 ya( xh) 2k 的图象与 yax 2, ya(xh) 2 的图象的关系1二次函数 y3 2 的图象是由抛物线 y3x 2 先向_(填“左”或(x 4)2 “右”) 平移_个单位,再向 _(填“上”或 “下”)平移_个

12.1二次根式第2课时二次根式的性质课堂达标练习含答案解析Tag内容描述:

1、第 3 课时 二次函数 ya(xh) 2k 的图象与性质知识点 1 二次函数 ya( xh) 2k 的图象与 yax 2, ya(xh) 2 的图象的关系1二次函数 y3 2 的图象是由抛物线 y3x 2 先向_(填“左”或(x 4)2 “右”) 平移_个单位,再向 _(填“上”或 “下”)平移_个单位得到的22017常德将抛物线 y2x 2 向右平移 3 个单位,再向下平移 5 个单位,得到的抛物线的表达式为( )Ay2( x3) 25 By2( x3) 25Cy 2(x3) 25 Dy2( x3) 253抛物线 y( x2) 23 可以由抛物线 yx 2 平移得到,则下列平移过程正确的是( )A先向左平移 2 个单位,再向上平移 3 个单位B先向左平移 2 个单位。

2、第 4 课时 二次函数 yax 2bxc 的图象与性质知识点 1 二次函数 yax 2bxc 与 ya( xh) 2k 的关系12018山西用配方法将二次函数 yx 28x9 化为 ya(xh) 2k 的形式为( )Ay(x4) 27 By(x4) 225Cy (x4) 27 Dy(x4) 2252试通过配方法求出抛物线 yx 24x 8 的顶点坐标和对称轴,并指出当 x 在什么范围内时,y 随 x 的增大而减小知识点 2 抛物线 yax 2bxc 的平移3在同一平面直角坐标系内,将函数 yx 24x1 的图象先向右平移 3 个单位,再向下平移 1 个单位,得到的图象的顶点坐标是( )A(2,5) B(1,4)C(1,6) D(2,2)42018广西将抛物线 y x26x21 向左平移 2。

3、26.2.2 第 1 课时 二次函数 yax 2k 的图象与性质知识点 1 二次函数 yax 2k 的图象与 yax 2 的图象的关系1如图 2628,将抛物线 y x2 向_平移_个单位得到抛物线13y x22;将抛物线 y x2 向_平移_个单位得到抛物线 y x22.13 13 13图 26282将二次函数 yx 2 的图象向下平移 1 个单位,则平移后的二次函数的关系式为( )Ayx 21 By x 21Cy (x1) 2 Dy(x 1) 23教材练习第 2 题变式不画出图象,回答下列问题:(1)函数 y4x 22 的图象可以看成是由函数 y4x 2 的图象通过怎样的平移得到的?(2)说出函数 y4x 22 的图象的开口方向、对称轴和顶点坐标;(3)如。

4、第 2 课时 二次函数 ya(xh )2 的图象与性质知识点 1 二次函数 ya( xh) 2 的图象与 yax 2 的图象的关系1将抛物线 yx 2 向_平移_个单位得到抛物线 y( x5) 2;将抛物线yx 2 向_平移_ 个单位得到抛物线 y( x5) 2.2下列方法可以得到抛物线 y (x2) 2 的是( )25A把抛物线 y x2 向右平移 2 个单位25B把抛物线 y x2 向左平移 2 个单位25C把抛物线 y x2 向上平移 2 个单位25D把抛物线 y x2 向下平移 2 个单位253顶点是(2,0),开口方向、形状与抛物线 y x2 相同的抛物线是( )12Ay (x2) 2 By (x 2)212 12Cy (x2) 2 Dy (x2) 212 12知识点 2 二次函数 y。

5、12.2 二次根式的乘除第 4 课时二次根式的除法及化简练习一、选择题1下列根式中是最简二次根式的是( )A. B. C. D.23 3 9 122化简 ,甲的解法是 ;乙的解法是 ;丙77 77 7 777 7 77 7 77 ( 7) 27 7的解法是 .其中解法正确的是( )77 727 727 7A只有甲 B只有乙C只有丙 D甲、乙、丙二、填空题3计算: _334将 化成最简二次根式为_12 135计算: _ 2783 126化简下列二次根式:(1) _; (2) _;35 25a3(3) _; (4) _;0.312 132 112(5) _; (6) _82a 23 。

6、12.2 二次根式的乘除第 3 课时二次根式的除法练习一、选择题1化简 的结果是( )18 2A9 B3 C3 D2 2 32化简 的结果是( )225A. B. C. D2 25 25 225 53等式 成立的条件是( )x 1x 2 x 1x 2链 接 听 课 例 2归 纳 总 结A x2 B x1C x2 D2 x14在算式( ) ( )的 中填上运算符号,使结果最大,这个运算符号是( )22 22A加号 B减号C乘号 D除号二、填空题5计算: _45 206长方形的面积为 cm2,一边长为 cm,则与其相邻的一边长是_cm.12 3三、解答题7计算:(1) ; (2) ;45010 313 123(3) (x。

7、12.2二次根式的乘除第 1课时二次根式的乘法练习一、选择题1计算 的结果是 ( )2 8 链 接 听 课 例 1归 纳 总 结A2 B4 C10 D162下列计算中,正确的是( )A. 6( 9) ( 4) 9 4B. 6( 9) ( 4) 94C. 142 32 42 32D. 742 32 4 3 4 3二、填空题3计算: _12 184计算 的结果是_18a 2a5写出一个与 的积为有理数的无理数:_.3三、解答题6计算:(1) ; (2) ;13 108 2 3 6(3) (a0).7a 28a 链 接 听 课 例 1归 纳 总 结7化简:(1) ; (2) ; (3) (m0);18 48 m5链 接 听 课。

8、12.3 二次根式的加减第 1 课时二次根式的加减练习一、选择题1计算 3 2 的结果是( )5 5链 接 听 课 例 2归 纳 总 结A. B2 C3 D65 5 52下列根式中,不能与 合并的是( )3A. B. C. D.13 33 23 123下列各组二次根式中,属于同类二次根式的是( )链 接 听 课 例 1归 纳 总 结A2 与 3 B. 与3 213 23C. 与 D. 与0.5 5 8x3 2x4计算 2 的正确结果是 ( )48 3 75A. B13C5 D6 3 3 755已知等腰三角形的两边长分别为 2 和 5 ,则此等腰三角形的周长为( )3 2A4 5 3 2B2 10 3 2C4 10 3 2D4 5 或 2 10 3 2 3 2二、填空题62018。

9、12.2二次根式的乘除第 2课时二次根式的乘法及化简练习一、选择题1化简 的结果正确的是( )48A2 B3 12 4C4 D4 3 32计算 的结果为( )12272A. B9 C. D.3 229 323下列各等式成立的是( )A4 2 8 B5 4 20 5 5 5 3 2 5C4 3 7 D5 4 20 3 2 5 3 2 64设 a, b,用含 a, b的式子表示 ,则下列表示正确的是( )2 3 0.54A0.3 ab B3 abC0.1 ab2 D0.1 a2b二、填空题5若 ,则 x的取值范围是_( 2 x) ( 3 x) 2 x 3 x6计算:3 2 _5 107计算: 。

10、12.1二次根式第 1课时二次根式练习一、选择题1下列各式中是二次根式的有( )(1) ;(2) ;(3) ; (4) .a 16 x2 4 32链 接 听 课 例 1归 纳 总 结A1 个 B2 个 C3 个 D4 个22018达州 二次根式 中的 x的取值范围是 ( )2x 4 链 接 听 课 例 2归 纳 总 结A x2 B x2 C x2 D x23若 是二次根式,则 a的值可能是( )aA2 B32C1 D142016盐城 若 a, b, c为 ABC的三边长,且满足| a4| 0,则 c的值b 2可以为( )A5 B6 C7 D8二、填空题52017呼和浩特 使式子 有意义的 x的取值范围为_11 2x6请你写出一个二次根式,要求被开方。

11、12.1 二次根式第 2 课时二次根式的性质练习一、选择题1下列各式中,正确的是( )A. 3 B 3( 3) 2 32C. 3 D. 3( 3) 2 322若 a1,化简 1 的结果是( )( a 1) 2A a2 B2 a C a D a3满足 3 a 的正整数 a 的值有( )( a 3) 2A1 个 B2 个 C3 个 D4 个4若 是整数,则正整数 n 的最小值是( )5 nA2 B3 C4 D55实数 a, b 在数轴上对应点的位置如图 K391 所示,且| a|b|,则化简 a2的结果为( )( a b) 2图 K391A2 a b B2 a bC b D2。

【12.1二次根式第2课时二次根】相关DOC文档
标签 > 12.1二次根式第2课时二次根式的性质课堂达标练习含答案解析[编号:141606]