人教版九年级上二次函数yaxh2k的图象和性质同步练习含答案

22.1.4 二次函数 y=ax2+bx+c 的图象和性质基础闯关全练拓展训练1.(2017 江苏南京栖霞二模)二次函数 y=ax2+bx+c(a0)的部分对应值如下表:x -3 -2 0 1 3 5 y 7 0 -8 -9 -5 7 则二次函数 y=ax2+bx+c 在 x=2 时,y= . 2.

人教版九年级上二次函数yaxh2k的图象和性质同步练习含答案Tag内容描述:

1、22.1.4 二次函数 y=ax2+bx+c 的图象和性质基础闯关全练拓展训练1.(2017 江苏南京栖霞二模)二次函数 y=ax2+bx+c(a0)的部分对应值如下表:x -3 -2 0 1 3 5 y 7 0 -8 -9 -5 7 则二次函数 y=ax2+bx+c 在 x=2 时,y= . 2.若 A(1,2),B(3,2),C(0,5),D(m,5)是抛物线 y=ax2+bx+c 上的四点,则 m= . 3.(2017 山东滨州阳信期中)如图 ,二次函数 y=ax2+bx+c 的图象经过 A,B,C 三点.(1)观察图象写出 A,B,C 三点的坐标, 并求出此二次函数的解析式;(2)求出此抛物线的顶点坐标和对称轴 .能力提升全练拓展训练1.(2017 浙江绍兴中考)矩形 ABCD 的两条对称轴为坐。

2、22.1.2 二次函数 y=ax2的图象和性质基础闯关全练拓展训练1.(2018 安徽宣城宣州月考)在二次函数 y=m 的图象的对称轴左侧,y 随 x 的增大而增23大,则 m 的值为( )A.m0 B.m= C.m=5 D.m=-5 52.(2017 天津河西期中)下列二次函数的图象中 ,开口最大的是( )A.y=x2 B.y=2x 2 C.y= x2 D.y=-x 211003.若点 A(-2,a)在抛物线 y=-5x2 上,则 A 关于 y 轴对称点的坐标是 . 4.对于二次函数 y=ax2(a0),当 x 取 x1,x2(x1x2)时, 函数值相等,则当 x 取 x1+x2 时,函数值为 .能力提升全练拓展训练1.下列说法错误的是( )A.二次函数 y=3x2 中,当 x0 时,y 随 x 的增。

3、22.1.2 二次函数 yax 2的图象和性质01 基础题知识点 1 二次函数 yax 2的图象1如图,函数 y2x 2 的图象是(C)ABCD2函数 yaxa 2 是二次函数,当 a 时,其图象开口向上;当 a 时,其图象开口2 2向下3填写下列抛物线的开口方向、对称轴、顶点坐标及最值抛物线 开口方向 对称轴 顶点坐标 最值yx 2 向上 y 轴 (0,0) 最小值 0yx 2 向下 y 轴 (0,0) 最大值 0y x215向上 y 轴 (0,0) 最小值 0y x215向下 y 轴 (0,0) 最大值 04.已知二次函数 yax 2 的图象经过点 A(1, )12(1)求这个二次函数的解析式并画出其图象;(2)请说出这个二次函数图象的顶点。

4、1二次函数 yax 2bxc 的图象和性质 同步练习题基础题知识点 1 二次函数 yax 2bxc 的图象和性质1二次函数 yx 24x5 的图象的对称轴为( )Ax4 Bx4Cx2 Dx22抛物线 yx 22x1 的顶点坐标是( )A(1,0) B(1,0)C(2,1) D(2,1)3在二次函数 yx 22x1 的图象中,若 y 随 x 的增大而增大,则 x 的取值范围是( )Ax1Cx14二次函数 yax 2bx1(a0)的图象经过点(1 ,1),则 ab1 的值是( )A3 B1C2 D35已知二次函数 yax 2bx。

5、第 2 课时 二次函数 ya(xh )2 的图象与性质知识点 1 二次函数 ya( xh) 2 的图象与 yax 2 的图象的关系1将抛物线 yx 2 向_平移_个单位得到抛物线 y( x5) 2;将抛物线yx 2 向_平移_ 个单位得到抛物线 y( x5) 2.2下列方法可以得到抛物线 y (x2) 2 的是( )25A把抛物线 y x2 向右平移 2 个单位25B把抛物线 y x2 向左平移 2 个单位25C把抛物线 y x2 向上平移 2 个单位25D把抛物线 y x2 向下平移 2 个单位253顶点是(2,0),开口方向、形状与抛物线 y x2 相同的抛物线是( )12Ay (x2) 2 By (x 2)212 12Cy (x2) 2 Dy (x2) 212 12知识点 2 二次函数 y。

6、1二次函数 yax 2k 的图象和性质 同步练习题基础题知识点 1 二次函数 yax 2k 的图象1在抛物线 yx 21 上的一个点是( )A(1,0) B(0,0)C(0,1) D(1,1)2抛物线 yx 21 的图象大致是( )3将二次函数 y2x 21 的图象沿 y 轴向上平移 2 个单位,则所得图象对应的函数表达式为_4填写下列抛物线的开口方向、对称轴、顶点坐标以及最值抛物线 开口方向 对称轴 顶点坐标 最值y2x 22y5x 23y x2115y x24125在同一直角坐标系中画出 y2x 2,y2x 23 的图象(1)分别指出它们的开口方向、对称轴以及顶点坐标;(2)抛物线 y2x 23 与抛物线 y2x 2 的图象有什么关系。

7、第 3 课时 二次函数 ya(xh) 2k 的图象与性质知识点 1 二次函数 ya( xh) 2k 的图象与 yax 2, ya(xh) 2 的图象的关系1二次函数 y3 2 的图象是由抛物线 y3x 2 先向_(填“左”或(x 4)2 “右”) 平移_个单位,再向 _(填“上”或 “下”)平移_个单位得到的22017常德将抛物线 y2x 2 向右平移 3 个单位,再向下平移 5 个单位,得到的抛物线的表达式为( )Ay2( x3) 25 By2( x3) 25Cy 2(x3) 25 Dy2( x3) 253抛物线 y( x2) 23 可以由抛物线 yx 2 平移得到,则下列平移过程正确的是( )A先向左平移 2 个单位,再向上平移 3 个单位B先向左平移 2 个单位。

8、第 1 页 共 5 页 二次函数二次函数 y=a(x-h)2+k(a0)的图的图象象与性质与性质巩固练习巩固练习(提高)(提高) 【巩固练习巩固练习】 一、选择题一、选择题 1. 不论 m 取任何实数,抛物线 y=a(x+m) 2+m(a0)的顶点都( ) A.在 y=x 直线上 B.在直线 y=x 上 C.在 x 轴上 D.在 y 轴上 2二次函数 2 (1)2yx的最小值是( ) A-2 B2 C-l D1 3如图所示,直角坐标系中,两条抛物线有相同的对称轴,下列关系不正确的是( ) Ahm Bkn Ckn D0k ,0n 第 3 题 第 5 题 4把抛物线 2 yx 向左平移 1 个单位,然后向上平移 3 个单位,则平移后抛物线的解析式为( 。

9、第 1 页 共 4 页 二次函数二次函数 y=a(x-h)2+k(a0)的图的图象象与性质与性质巩固练习(巩固练习(基础)基础) 【巩固练习巩固练习】 一、选择题一、选择题 1.抛物线 2 (2)3yx 的顶点坐标是( ) A(2,-3) B(-2,3) C(2,3) D(-2,-3) 2.函数 y= 2 1 x 2+2x+1 写成 y=a(xh)2+k 的形式是( ) A.y= 2 1 (x1) 2+2 B.y= 2 1 (x1) 2+ 2 1 C.y= 2 1 (x1) 23 D.y= 2 1 (x+2) 21 3抛物线 y= 2 1 x 2向左平移 3 个单位,再向下平移 2 个单位后,所得的抛物线表达式是( ) A.y= 2 1 (x+3) 22 B.y= 2 1 (x3) 2+2 C.y= 2 1 (x3) 22 D.y= 2 1 (x+3) 2。

10、22.1.3 二次函数y=a(xh)2+k的图象 第1课时,1.会画y=ax2+k,y=a(x-h)2的图象; 2.了解y=ax2+k,y=a(x-h)2的图象与y=ax2的关系,能结合图象理解二次函数的性质.,二次函数y=ax2的图象是什么形状呢?什么确定y=ax2的性质?通常怎样画一个函数的图象?,我们来画最简单的二次函数y=x2的图象.,还记得如何用 描点法画一个 函数的图象吗?,9,4,1,0,1,4,9,y=x2,O,在同一直角坐标系中,画出二次函数 y=x2 , y=x2+1, y=x2-1的图象.,【解析】列表:,10 5 2 1 2 5 10,8 3 0 -1 0 3 8,y=x2+1,10,8,6,4,2,-2,-5,5,x,y,y=x2-1,y=x2,O,描点,连线,(1)抛物。

11、22.1.3 二次函数y=a(xh)2+k的图象 第2课时,1.会画y=a(x-h)2+k的图象; 2.了解y=a(x-h)2+k的图象与y=ax2的关系,能结合图象理解y=a(x-h)2+k的性质.,观察图象,回答问题,函数y=3(x-1)2的图象与y=3x2的图象有什么关系?它是轴对称图形吗?它的对称轴和顶点坐标分别是什么?,在同一坐标系中作出二次函数y=3x和 y=3(x-1)的图象,1.,2.,3.,-1,-2,-3.,0.,1.,2.,3.,4.,-1,x,y,5,y=2(x-1)2+1,y=2(x-1)2,y=2x2,观察这三个图象是如何平移的.,二次函数y=0.5x,y=0.5(x+1)2和y=0.5(x+1)21的图象有什么关系?它们的开口方向、对称轴和顶点坐标分别是什么?,【例。

12、1二次函数 ya(xh) 2的图象和性质 同步练习题基础题知识点 1 二次函数 ya( xh) 2的图象1在平面直角坐标系中,二次函数 ya(x2) 2(a0)的图象可能是 ( )2如果将抛物线 yx 2 向右平移 1 个单位,那么所得的抛物线的表达式是( )Ayx 21 Byx 21Cy(x1) 2 Dy(x1) 23抛物线 y3(x1) 2 不经过的象限是( )A第一、二象限 B第二、四象限C第三、四象限 D第二、三象限4将抛物线 yax 2 向左平移 2 个单位后,经过点(4, 4),则 a_5在同一平面直角坐标系中,画出函数 yx 2,y(x2) 2,y(x2) 2 的图象,并写出对称轴及顶点坐标知识点 2 二次函数 ya(x h)2的性质6。

13、第 4 课时 二次函数 ya( xh) 2k 的图象与性质知识要点分类练 夯实基础知识点 1 二次函数 ya(x h)2k 与 yax 2的图象的关系12017常德将抛物线 y2x 2 向右平移 3 个单位,再向下平移 5 个单位,得到的抛物线的表达式为( )Ay2(x 3) 25 By 2(x3) 25Cy2(x3) 25 Dy2(x3) 252抛物线 y(x3) 22 可以由抛物线 yx 2 先向右平移 _个单位,再向上平移_个单位得到3函数 y2(x1) 21 的图象可以由函数 y2(x2) 23 的图象先向右平移_个单位,再向_平移_个单位得到知识点 2 二次函数 ya( xh) 2k 的图象与性质4教材习题 1.2 第 6 题变式二次函数 y2(x2) 21 的图。

14、22.1.3 二次函数 ya(xh) 2k 的图象和性质第 1 课时 二次函数 yax 2k 的图象和性质01 基础题知识点 1 二次函数 yax 2k 的图象1(教材 P33 练习变式 )函数 y x21 与 y x2 的图象的不同之处是 (C)13 13A对称轴 B开口方向C顶点 D形状2(自贡期中)二次函数 yx 21 的图象大致是(B)3(上海中考)如果将抛物线 yx 22 向下平移 1 个单位长度,那么所得新抛物线的解析式是(C)Ay(x1) 22 By(x1) 22Cyx 21 Dyx 234抛物线 y2x 21 在 y 轴右侧的部分是上升(填“上升”或“下降”) 5填写下列抛物线的开口方向、对称轴、顶点坐标以及最值抛物线 开口方向 对称轴。

15、1二次函数 ya(xh) 2k 的图象和性质 同步练习题基础题知识点 1 二次函数 ya( xh) 2k 的图象1二次函数 y(x2) 21 的图象大致为( )2将抛物线 yx 2 向左平移 2 个单位长度,再向下平移 3 个单位长度,得到的抛物线的函数表达式为( )Ay(x2) 23 By(x2) 23Cy(x2) 23 Dy(x2) 233对于二次函数 y(x1) 22 的图象,下列说法正确的是 ( )A开口向下B对称轴是 x1C顶点坐标是(1,2)D与 x 轴有两个交点4若抛物线 y7(x4) 21 平移得到 y7x 2,则必须 ( )A先向左平移 4 个单位,再向下平移 1 个单位B先向右平移 4 个单位,再向上平移 1 个单位C先向左平移 1 个。

【人教版九年级上二次函数yax】相关PPT文档
【人教版九年级上二次函数yax】相关DOC文档
标签 > 人教版九年级上二次函数yaxh2k的图象和性质同步练习含答案[编号:79175]