第2课时用二分法求方程的近似解 基础达标 1.在用二分法求函数f(x)零点近似值时,第一次所取的区间是2,4,则第三次所取的区间可能是() A.1,4 B.2,1 C. D. 解析第一次所取的区间是2,4,第二次所取的区间可能为2,1,1,4,第三次所取的区间可能为,. 答案D 2.方程2x2x10
10的分与合课时作业含答案Tag内容描述:
1、第2课时用二分法求方程的近似解基础达标1.在用二分法求函数f(x)零点近似值时,第一次所取的区间是2,4,则第三次所取的区间可能是()A.1,4 B.2,1C. D.解析第一次所取的区间是2,4,第二次所取的区间可能为2,1,1,4,第三次所取的区间可能为,.答案D2.方程2x2x10的根所在区间为()A.(0,1) B.(1,2) C.(2,3) D.(3,4)解析设f(x)2x2x10,则yf(x)在R上为单调增函数,故yf(x)只有一个零点.f(0)9,f(1)6,f(2)2,f(3)4,f(2)f(3)0.根所在区间为(2,3).答案C3.用二分法求方程ln x2x0在区间1,2上零点的近似值,先取区间中点c,则下一个含根的。
2、11.1 集合的概念与运算A组 基础题组1.(2018浙江,1,4 分)已知全集 U=1,2,3,4,5,A=1,3,则 UA=( )A. B.1,3 C.2,4,5 D.1,2,3,4,5答案 C 本小题考查集合的运算.U=1,2,3,4,5,A=1,3, UA=2,4,5.2.已知全集 U=R,集合 M=x|x2-2x-30,N=y|y=x 2+1,则 M( UN)=( )A.x|-1xa,且( UA)B=R, 则实数 a的取值范围是( )A.(-,1) B.(-,1 C.1,+) D.(1,+)答案 A 因为 A=x|x1,所以 UA=x|x2 C.a2 D.a0,则 A( UB)=( )A.x|x0C.x|01答案 A 由 2x0得 x1,所以 B=x|x1,所以 UB=x|x1,所以 A( UB)=x|x0,故选 A.4.集合 A=x|2x2-3x0,xZ,B=x|12 x32,xZ,若 ACB。
3、1.1.3 集合的基本运算第 1 课时 并集与交集课时目标 1.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.2.能使用 Venn 图表达集合的关系及运算,体会直观图示对理解抽象概念的作用1并集(1)定义:一般地,_的元素组成的集合,称为集合 A 与 B 的并集,记作_(2)并集的符号语言表示为 AB_ _.(3)并集的图形语言(即 Venn 图)表示为下图中的阴影部分:(4)性质:AB_,A A_,A_,A BA _,A_AB .2交集(1)定义:一般地,由_元素组成的集合,称为集合 A 与 B 的交集,记作_(2)交集的符号语言表示为 AB_。
4、第一章 集合与函数概念1.1 集 合11.1 集合的含义与表示第 1 课时 集合的含义课时目标 1.通过实例了解集合的含义,并掌握集合中元素的三个特性.2.体会元素与集合间的“从属关系”.3.记住常用数集的表示符号并会应用1元素与集合的概念(1)把_统称为元素,通常用_表示(2)把_叫做集合( 简称为集),通常用_表示2集合中元素的特性:_、_、_.3集合相等:只有构成两个集合的元素是_的,才说这两个集合是相等的4元素与集合的关系关系 概念 记法 读法属于 如果_的元素,就说 a 属于集合 A aA a 属于集合 A元素与集合的关系 不属于 如果_中的元素,就。
5、第 2 课时 集合的表示课时目标 1.掌握集合的两种表示方法( 列举法、描述法).2. 能够运用集合的两种表示方法表示一些简单集合1列举法把集合的元素_出来,并用花括号“ ”括起来表示集合的方法叫做列举法2描述法用集合所含元素的共同特征表示集合的方法称为_不等式 x76 的解的集合;大于 0.5 且不大于 6 的自然数的全体构成的集合11已知集合 Ax| yx 2 3,By|y x 23,C(x,y )|yx 23,它们三个集合相等吗?试说明理由能力提升12下列集合中,不同于另外三个集合的是( )A x|x1 B y|(y1) 20Cx1 D113已知集合 Mx |x ,kZ ,N x|x ,k Z ,若 x0M。
6、1集合的含义与表示第1课时集合的含义基础过关1下列选项中的对象不能构成集合的是()A小于5的自然数B著名的艺术家C曲线yx2上的点D不等式2x17的整数解解析选项B中的对象没有明确的标准,不具备确定性,故不能构成一个集合答案B2集合A中只含有元素a,则下列各式一定正确的是()A0A BaACaA DaA解析由题意知A中只有一个元素a,aA,元素a与集合A的关系不能用“”,a是否等于0不确定,所以0是否属于A不确定,故选C.答案C3集合Ax|x5,xN*,用列举法表示集合A正确的是()A0,1,2,3,4 B1,2,3,4C0,1,2,3,4,5 D1,2,3,4,5答案B4已知R;Q;0。
7、第2课时集合的表示基础过关1用列举法表示集合x|x22x10为()A1,1 B1Cx1 Dx22x10解析集合x|x22x10实质是方程x22x10的解集,此方程有两相等实根为1,故可表示为1故选B.答案B2集合1,5,9,13,17用描述法表示,其中正确的是()Ax|x是小于18的正奇数Bx|x4k1,kZ,且k5Cx|x4t3,tN,且t5Dx|x4s3,sN*,且s6答案D3给出下列说法:任意一个集合的正确表示方法是唯一的;集合Px|0x1是无限集;集合x|xN*,x50,1,2,3,4;第二、四象限内的点集可表示为(x,y)|xy0,xR,yR其中正确说法的序号是()A B C D解析对于某些集合(如小于10的自然数组成的集合。
8、第 4 课时 8、9 的分与合1、把合起来是 8 的苹果涂上颜色。2、在 里填上合适的数。三、把能组成 9 的两个数连起来。答案:一、把 3 和 5 涂上颜色;把 2 和 6 涂上颜色;把 1 和 7 涂上颜色;把 4和 4 涂上颜色;二、8 8 2 8三、略。