25的分与合课时作业含答案

第2课时用二分法求方程的近似解 基础达标 1.在用二分法求函数f(x)零点近似值时,第一次所取的区间是2,4,则第三次所取的区间可能是() A.1,4 B.2,1 C. D. 解析第一次所取的区间是2,4,第二次所取的区间可能为2,1,1,4,第三次所取的区间可能为,. 答案D 2.方程2x2x10

25的分与合课时作业含答案Tag内容描述:

1、第2课时用二分法求方程的近似解基础达标1.在用二分法求函数f(x)零点近似值时,第一次所取的区间是2,4,则第三次所取的区间可能是()A.1,4 B.2,1C. D.解析第一次所取的区间是2,4,第二次所取的区间可能为2,1,1,4,第三次所取的区间可能为,.答案D2.方程2x2x10的根所在区间为()A.(0,1) B.(1,2) C.(2,3) D.(3,4)解析设f(x)2x2x10,则yf(x)在R上为单调增函数,故yf(x)只有一个零点.f(0)9,f(1)6,f(2)2,f(3)4,f(2)f(3)0.根所在区间为(2,3).答案C3.用二分法求方程ln x2x0在区间1,2上零点的近似值,先取区间中点c,则下一个含根的。

2、第 2 课时 集合的表示课时目标 1.掌握集合的两种表示方法( 列举法、描述法).2. 能够运用集合的两种表示方法表示一些简单集合1列举法把集合的元素_出来,并用花括号“ ”括起来表示集合的方法叫做列举法2描述法用集合所含元素的共同特征表示集合的方法称为_不等式 x76 的解的集合;大于 0.5 且不大于 6 的自然数的全体构成的集合11已知集合 Ax| yx 2 3,By|y x 23,C(x,y )|yx 23,它们三个集合相等吗?试说明理由能力提升12下列集合中,不同于另外三个集合的是( )A x|x1 B y|(y1) 20Cx1 D113已知集合 Mx |x ,kZ ,N x|x ,k Z ,若 x0M。

3、第2课时集合的表示基础过关1用列举法表示集合x|x22x10为()A1,1 B1Cx1 Dx22x10解析集合x|x22x10实质是方程x22x10的解集,此方程有两相等实根为1,故可表示为1故选B.答案B2集合1,5,9,13,17用描述法表示,其中正确的是()Ax|x是小于18的正奇数Bx|x4k1,kZ,且k5Cx|x4t3,tN,且t5Dx|x4s3,sN*,且s6答案D3给出下列说法:任意一个集合的正确表示方法是唯一的;集合Px|0x1是无限集;集合x|xN*,x50,1,2,3,4;第二、四象限内的点集可表示为(x,y)|xy0,xR,yR其中正确说法的序号是()A B C D解析对于某些集合(如小于10的自然数组成的集合。

4、第 4 课时 8、9 的分与合1、把合起来是 8 的苹果涂上颜色。2、在 里填上合适的数。三、把能组成 9 的两个数连起来。答案:一、把 3 和 5 涂上颜色;把 2 和 6 涂上颜色;把 1 和 7 涂上颜色;把 4和 4 涂上颜色;二、8 8 2 8三、略。

标签 > 25的分与合课时作业含答案[编号:192015]