1.2.4 诱导公式二课时对点练含答案

4.2.2 等差数列的前等差数列的前 n 项和公式项和公式 第第 1 课时课时 等差数列前等差数列前 n 项和公式的推导及简单应用项和公式的推导及简单应用 1已知等差数列an的前 n 项和为 Sn,若 2a6a86,则 S7等于( ) A49 B42 C35 D28 答案 B 解析 2a6a8a46

1.2.4 诱导公式二课时对点练含答案Tag内容描述:

1、4.2.2 等差数列的前等差数列的前 n 项和公式项和公式 第第 1 课时课时 等差数列前等差数列前 n 项和公式的推导及简单应用项和公式的推导及简单应用 1已知等差数列an的前 n 项和为 Sn,若 2a6a86,则 S7等于( ) A49 B42 C35 D28 答案 B 解析 2a6a8a46,S77 2(a1a7)7a442. 2在等差数列an中,已知 a110,d2,Sn580,则 。

2、第第 2 课时课时 等比数列前等比数列前 n 项和公式的应用项和公式的应用 1某森林原有木材量为 a m3,每年以 25%的速度增长,5 年后,这片森林共有木材量( ) Aa(125%)5 Ba(125%)4 C4a 5 4 51 Da(125%)6 答案 A 解析 森林中原有木材量为 a,一年后为 a(125%),两年后为 a(125%)2,五年后为 a(125%)5. 2某地为了。

3、4.34.3 等比数列等比数列 4 4. .3.13.1 等比数列的概念等比数列的概念 第第 1 1 课时课时 等比数列的概念及通项公式等比数列的概念及通项公式 1在数列an中,若 an13an,a12,则 a4为( ) A108 B54 C36 D18 答案 B 解析 因为 an13an, 所以数列an是公比为 3 的等比数列, 则 a433a154. 2(多选)在等比数列an中,a11 8。

4、4.24.2 等差数列等差数列 4 4. .2.12.1 等差数列的概念等差数列的概念 第第 1 1 课时课时 等差数列的概念及通项公式等差数列的概念及通项公式 1设数列an是等差数列,若 a24,a46,则 an等于( ) An B2n C2n1 Dn2 答案 D 解析 a4a22d642. d1.a1a2d3.an3(n1)1n2. 2在等差数列an中,已知 a3a810,则 3a5a7等。

5、4.3.2 等比数列的前等比数列的前 n 项和公式项和公式 第第 1 课时课时 等比数列前等比数列前 n 项和公式项和公式 1在等比数列an中,a12,a21,则 S100等于( ) A42100 B42100 C42 98 D42100 答案 C 解析 qa2 a1 1 2. S100a11q 100 1q 2 1 1 2 100 11 2 4(12 100)4298. 2设等比数列a。

6、4.14.1 数列的概念数列的概念 第第 1 1 课时课时 数列的概念及通项公式数列的概念及通项公式 1(多选)下列说法正确的是( ) A数列可以用图象来表示 B数列的通项公式不唯一 C数列中的项不能相等 D数列可以用一群孤立的点表示 答案 ABD 解析 数列中的项可以相等,如常数列,故选项 C 中说法不正确 2数列1,3,7,15,的一个通项公式可以是( ) Aan(1)n (2n1),nN。

7、第第 2 课时课时 数列的递推公式数列的递推公式 1已知数列an满足 an4an13(n2,nN*),且 a10,则此数列的第 5 项是( ) A15 B255 C16 D63 答案 B 解析 由递推公式,得 a23,a315,a463,a5255. 2数列1 2, 1 4, 1 8, 1 16,的第 n 项 an与第 n1 项 an1 的关系是( ) Aan12an Ban12an Can1。

8、第第 4 4 课时课时 二倍角的正弦余弦正切公式二倍角的正弦余弦正切公式 课时对点练课时对点练 1cos275 cos215 cos 75 cos 15 的值等于 A.62 B.32 C.54 D134 答案 C 解析 原式sin215 c。

9、1.31.3 三角函数的诱导公式三角函数的诱导公式( (二二) ) 一、选择题 1已知 cos 1 4,则 sin 2 等于( ) A.1 4 B 1 4 C. 15 4 D 15 4 考点 异名诱导公式 题点 诱导公式六 答案 A 解析 sin 2 cos 1 4. 2已知 sin 1 5,则 cos(450 )的值是( ) A.1 5 B1 5 C2 6 5 D.2 6 5 .。

10、4.4单位圆的对称性与诱导公式(一)一、选择题1cos 600的值为()A. B. C D答案D解析cos 600cos(360240)cos 240cos(18060)cos 60.2sin(390)的值为()A. B C. D答案D解析sin(390)sin(36030)sin(30)sin 30.3下列三角函数中,与sin数值相同的是()sin;cos;sin;cos;sin(nZ)A BC D答案C4sin(2)cos(42)化简的结果为()Asin 2cos 2 B1C2sin 2 D2sin 2答案A解析原式sin 2cos 。

11、5.35.3 诱导公式诱导公式 第第 1 1 课时课时 诱导公式诱导公式 一一 课时对点练课时对点练 1sin 1 290 等于 A32 B12 C.12 D.32 答案 B 解析 sin 1 290 sin3360 210 sin 210。

12、第第 2 2 课时课时 诱导公式诱导公式 二二 课时对点练课时对点练 1已知 sin 25.3 a,则 cos 64.7 等于 Aa Ba Ca2 D. 1a2 答案 A 解析 cos 64.7 cos90 25.3 sin 25.3 a.。

13、1.2.4诱导公式(一)一、选择题1.cos 600的值为()A. B. C. D.答案D解析cos 600cos(360240)cos 240cos(18060)cos 60.2.tan 690的值为()A. B. C. D.答案A解析tan 690tan(360330)tan 330tan(36030)tan 30.3.若cos(),2,则sin(2)等于()A. B. C. D.答案D解析由cos(),得cos ,故sin(2)sin (为第四象限角).4.化简sin2()cos()cos()1的值为()A.1 B.2sin。

14、1.2.4诱导公式(二)一、选择题1.已知cos ,则sin等于()A. B. C. D.答案A解析sincos .2.已知sin 10k,则cos 620的值为()A.k B.k C.k D.不确定答案B解析cos 620cos(360260)cos 260cos(27010)sin 10k.3.已知sin,则cos等于()A. B. C. D.答案B解析因为sin,所以coscossin.4.已知sin,则cos的值等于()A. B.C. D.答案A解析cossinsinsin.5.若sin(3),则cos等于()A. B. C. D.答案A解析sin(3)sin ,sin .。

【1.2.4 诱导公式二课时对点】相关DOC文档
标签 > 1.2.4 诱导公式二课时对点练含答案[编号:108683]