1.1 正弦定理 课时对点练含答案

6.36.3 平面向量基本定理及坐标表示平面向量基本定理及坐标表示 6 6. .3.13.1 平面向量基本定理平面向量基本定理 1多选若e1,e2是平面内的一个基底,则下列四组向量中不能作为平面向量的基底的是 Ae1e2,e2e1 B2e1,2.3向量的坐标表示 23.1平面向量基本定理 一、选择题

1.1 正弦定理 课时对点练含答案Tag内容描述:

1、6.36.3 平面向量基本定理及坐标表示平面向量基本定理及坐标表示 6 6. .3.13.1 平面向量基本定理平面向量基本定理 1多选若e1,e2是平面内的一个基底,则下列四组向量中不能作为平面向量的基底的是 Ae1e2,e2e1 B2e1。

2、2.3向量的坐标表示23.1平面向量基本定理一、选择题1如图所示,矩形ABCD中,5e1,3e2,则等于()A.(5e13e2)B.(5e13e2)C.(3e25e1)D.(5e23e1)考点平面向量基本定理题点用基底表示向量答案A解析()()(5e13e2)2如图所示,用向量e1,e2表示向量ab为()A4e12e2 B2e14e2Ce13e2 D3e1e2考点平面向量基本定理题点用基底表示向量答案C3已知非零向量,不共线,且2xy,若(R),则x,y满足的关系是()Axy20 B2xy10Cx2y20 D2xy20答案A4已知A,B,D三点共线,且对任一点C,有,则等于()A. B. C D答案C解析因为A,B,D三点共线,所以存在实数t,使t,则t()所以t。

3、2.2向量的分解与向量的坐标运算2.2.1平面向量基本定理一、选择题1.设e1,e2是平面内所有向量的一组基底,则下列四组向量中,不能作为基底的是()A.e1e2和e1e2 B.3e14e2和6e18e2C.e12e2和2e1e2 D.e1和e1e2答案B解析B中,6e18e22(3e14e2),(6e18e2)(3e14e2),3e14e2和6e18e2不能作为基底.2.如图所示,用向量e1,e2表示向量ab为()A.4e12e2 B.2e14e2C.e13e2D.3e1e2答案C解析如图,由向量的减法得ab.由向量的加法得e13e2.3.设向量e1和e2是某一平面内所有向量的一组基底,若3xe1(10y)e2(4y7)e12xe2,则实数y的值为()A.3 B.4 C. D.答案B解析因为3x。

4、3.2平面向量基本定理一、选择题1如图所示,矩形ABCD中,5e1,3e2,则等于()A.(5e13e2)B.(5e13e2)C.(3e25e1)D.(5e23e1)答案A解析()()(5e13e2)2如图所示,用向量e1,e2表示向量ab为()A4e12e2 B2e14e2Ce13e2 D3e1e2答案C解析如图,由向量的减法得ab.由向量的加法得e13e2.3若1a,2b,2(1),则等于()Aab Ba(1)bCab D.ab答案D解析2,1(2),(1)12,12ab.4设点D为ABC中BC边上的中点,O为AD边上靠近点A的三等分点,则()A.B.C.D.答案D解析依题意,得(),故选D.5已知A。

5、5.45.4 三角函数的图象与性质三角函数的图象与性质 5 5. .4.14.1 正弦函数正弦函数余弦函数的图象余弦函数的图象 课时对点练课时对点练 1在同一平面直角坐标系内,函数 ysin x,x0,2与 ysin x,x2,4的图象 A。

6、1归纳与类比1.1归纳推理一、选择题1观察下列等式:132332,13233362,13233343102,根据上述规律可知,132333435363等于()A192 B202 C212 D222考点归纳推理的应用题点归纳推理在数对(组)中的应用答案C解析由题意可知,132333435363(123456)2212.2.观察图形规律,在其右下角的空格内画上合适的图形为()A. B C. D考点归纳推理的应用题点归纳推理在图形中的应用答案A解析观察可发现规律:每行、每列中,方、圆、三角三种形状均各出现一次,每行、每列有两阴影一空白,即得结果3观察下列式子:1,1,1,根据以上式子可以猜想:1小于()A. B. C. D。

7、1数列11数列的概念一、选择题1已知数列an的通项公式为an,nN,则该数列的前4项依次为()A1,0,1,0 B0,1,0,1C.,0,0 D2,0,2,0答案A解析当n分别等于1,2,3,4时,a11,a20,a31,a40.2数列1,3,6,10,的一个通项公式是()Aann2n1 BanCan Dann21答案C解析令n1,2,3,4,代入A,B,C,D检验,即可排除A,B,D,故选C.3数列,的一个通项公式可能是()Aan(1)n Ban(1)nCan(1)n1 Dan(1)n1答案D解析由已知数列,可得数列各项的的分母绝对值为2n,又数列所有的奇数项为正,偶数项为负,故可用(1)n1来控制各项的符号,故数列,的一个通项公式为an(1)n1,故选D。

8、第一节认识运动选择题考点一参考系1下列说法中正确的是()A被选做参考系的物体是假定不动的B一乘客在车厢内走动的时候,他就说车是运动的C研究地面上物体的运动,必须选取地面为参考系D物体运动的轨迹是直线还是曲线,与参考系的选取无关答案A解析自然界中的一切物体都处在永恒的运动中,被选为参考系的物体只是假定不动,所以选项A正确物体是运动还是静止,是相对于参考系而言的,在车厢内走动的乘客,在没有明确参考系之前就说车是运动的是错误的,所以选项B错误研究物体的运动时,参考系是可以任意选取的(但不能选研究对象本身为参考系)。

9、1回归分析1.1回归分析一、选择题1对变量x,y由观测数据(xi,yi)(i1,2,10),得散点图(1);对变量u,v由观测数据(ui,vi)(i1,2,10),得散点图(2),由这两个散点图可以判断()A变量x与y正相关,u与v正相关B变量x与y正相关,u与v负相关C变量x与y负相关,u与v正相关D变量x与y负相关,u与v负相关考点回归分析题点回归分析的概念和意义答案C解析由题图(1)可知,各点整体呈递减趋势,x与y负相关;由题图(2)可知,各点整体呈递增趋势,u与v正相关2某医学科研所对人体脂肪含量与年龄这两个变量研究得到一组随机样本数据,运用Excel软件计算得y0.577。

10、习题课正弦定理和余弦定理一、填空题1在钝角ABC中,a1,b2,则最大边c的取值范围是 考点判断三角形形状题点已知三角形形状求边的取值范围答案(,3)解析由cos Ca2b25.c,又cab3,c3.2在ABC中,sin2Asin2Bsin2Csin Bsin C,则A的取值范围是 考点余弦定理及其变形应用题点用余弦定理求边或角的取值范围答案解析设内角A,B,C所对的边分别为a,b,c,则由已知及正弦定理得a2b2c2bc.由余弦定理得a2b2c22bccos A,则cos A.0A,0A.3设ABC的内角A,B,C所对的边分别为a,b,c,若bcos Cccos Basin A,则ABC的形状为 (填直角、钝角、锐角三角形)考。

11、5正弦函数的图像与性质5.1正弦函数的图像一、选择题1以下对正弦函数ysin x的图像描述不正确的是()A在x2k,2(k1)(kZ)上的图像形状相同,只是位置不同B介于直线y1与直线y1之间C关于x轴对称D与y轴仅有一个交点考点正弦函数的图像题点正弦函数图像的应用答案C解析画出ysin x的图像(图略),根据图像可知A,B,D三项都正确2若函数ysin(x)的图像过点,则的值可以是()A. B. C D答案C解析将点代入ysin(x),可得k,kZ,所以k,kZ,只有选项C满足3函数y的图像是()答案C解析由y|sin x|易知该函数为偶函数,当sin x0时,ysin x,当sin x0时,ysin x,作。

12、5.2正弦函数的性质一、选择题1函数f(x)12sin2x2sin x的最大值与最小值的和是()A2 B0 C D答案C解析f(x)12sin2x2sin x22,所以函数f(x)的最大值是,最小值是3,所以最大值与最小值的和是,故选C.2函数f(x)是()A奇函数B偶函数C既是奇函数又是偶函数D非奇非偶函数答案B解析函数f(x)的定义域为(,0)(0,),关于原点对称,且f(x)f(x),故f(x)为偶函数3下列关系式中正确的是()Asin 11cos 10sin 168Bsin 168sin 11cos 10Csin 11sin 168cos 10Dsin 168cos 10sin 11。

13、第第 4 4 课时课时 余弦定理正弦定理应用举例余弦定理正弦定理应用举例 1已知海上 A,B 两个小岛相距 10 海里,C 岛临近陆地,若从 A 岛望 C 岛和 B 岛成 60 的视角,从 B 岛望 C 岛和 A 岛成 75 的视角,则 B。

14、第第 5 5 课时课时 余弦定理余弦定理正弦定理的应用正弦定理的应用 1在ABC 中,角 A,B,C 所对的边分别是 a,b,c,若 A30 ,ab2,则ABC 的面积为 A1 B. 3 C2 D2 3 答案 B 解析 在ABC 中,A30。

15、第第 2 2 课时课时 正弦定理正弦定理 一一 1在ABC 中,若 A105 ,B45 ,b2 2,则 c 等于 A1 B2 C. 2 D. 3 答案 B 解析 A105 ,B45 ,C30 . 由正弦定理,得 cbsin Csin B2 。

16、第第 3 3 课时课时 正弦定理正弦定理 二二 1已知 a,b,c 分别是ABC 的内角 A,B,C 所对的边,且满足acos Abcos Bccos C,则ABC 的形状是 A等腰三角形 B直角三角形 C等边三角形 D等腰直角三角形 答案。

17、1.3正弦定理、余弦定理的应用一、选择题1.要测量底部不能到达的电视塔AB的高度,在C点测得塔顶A的仰角是45,在D点测得塔顶A的仰角30,并测得水平面上的BCD120,CD40 m,则电视塔的高度为() A10 m B20 mC20 m D40 m答案D解析设电视塔的高度为x m,则BCx,BDx.在BCD中,由余弦定理得3x2x2402240xcos 120,即x220x8000,解得x20(舍去)或x40.故电视塔的高度为40 m.2从高出海平面h米的小岛看正东方向有一只船俯角为30,看正南方向有一只船俯角为45,则此时两船间的距离为()A2h米 B.h米C.h米 D2h米答案A解析如图所示,由题意可知,BCh,ACh,AB2。

18、1.1正弦定理第1课时正弦定理的推导和简单应用一、选择题1在ABC中,a5,b3,则sin Asin B的值是()A. B. C. D.答案A解析根据正弦定理,得.2在ABC中,若A105,B45,b2,则c等于()A1 B2 C. D.答案B解析A105,B45,C30.由正弦定理,得c2.3在ABC中,absin A,则ABC一定是()A锐角三角形 B直角三角形C钝角三角形 D等腰三角形答案B解析由题意可知b,则sin B1,又B(0,),故B为直角,ABC是直角三角形4在ABC中,若,则C的值为()A30 B45 C60 D90答案B解析由正弦定理知,cos Csin C,tan C1,又C。

19、第2课时正弦定理的应用一、选择题1在ABC中,A,B,C所对的边分别为a,b,c,其中a4,b3,C60,则ABC的面积为()A3 B3 C6 D6答案B解析SABCabsin C43sin 603.2在ABC中,若abc335,则的值为()A B. C. D答案C解析由条件得,sin Asin C.同理可得sin Bsin C.3在锐角ABC中,角A,B,C的对边分别为a,b,c,且a4bsin A,则cos B的值为()A. B C. D答案A解析由正弦定理及a4bsin A,得sin A4sin Bsin A,又sin A0,4sin B1,sin B,B为锐角,cos B.4在ABC中,已知a3,cos C,SABC4,则b的值为()A. B2 C4 D8答案。

20、1正弦定理与余弦定理11正弦定理一、选择题1在ABC中,a5,b3,则sin Asin B的值是()A. B. C. D.答案A解析根据正弦定理,得.2在ABC中,absin A,则ABC一定是()A锐角三角形 B直角三角形C钝角三角形 D等腰三角形答案B解析由题意有b,则sin B1,又B(0,),故角B为直角,故ABC是直角三角形3在ABC中,若,则C的值为()A30 B45 C60 D90答案B解析由正弦定理知,cos Csin C,tan C1,又C(0,),C45,故选B.4已知ABC中,a,b,B60,那么角A等于()A135 B90 C45 D30答案C解析由正弦定理,得sin A.。

【1.1 正弦定理 课时对点练含】相关DOC文档
3.2 平面向量基本定理 课时对点练含答案
1.1 归纳推理 课时对点练(含答案)
1.1 数列的概念 课时对点练(含答案)
《1.1 认识运动》课时对点练(含答案)
1.1 回归分析 课时对点练(含答案)
5.1 正弦函数的图像 课时对点练含答案
5.2 正弦函数的性质 课时对点练含答案
1.1 正弦定理 课时对点练(含答案)
标签 > 1.1 正弦定理 课时对点练含答案[编号:127001]