北师大版七年级下册数学《第5章生活中的轴对称》全章教案

上传人:可** 文档编号:49670 上传时间:2019-03-09 格式:DOC 页数:26 大小:1.63MB
下载 相关 举报
北师大版七年级下册数学《第5章生活中的轴对称》全章教案_第1页
第1页 / 共26页
北师大版七年级下册数学《第5章生活中的轴对称》全章教案_第2页
第2页 / 共26页
北师大版七年级下册数学《第5章生活中的轴对称》全章教案_第3页
第3页 / 共26页
北师大版七年级下册数学《第5章生活中的轴对称》全章教案_第4页
第4页 / 共26页
北师大版七年级下册数学《第5章生活中的轴对称》全章教案_第5页
第5页 / 共26页
点击查看更多>>
资源描述

1、第五章 生活中的轴对称教材简析本章的主要内容有轴对称和轴对称图形的概念以及它们的区别、联系;简单的轴对称图形的性质;利用轴对称进行图案设计在对轴对称图象的初步认识的基础上,通过观察、认识、分析生活中的轴对称现象,研究轴对称及其基本性质,进而动手操作利用轴对称进行图案设计本章是中考的必考内容,主要考查轴对称、轴对称图形的识别、线段垂直平分线的性质及等腰三角形的判定方法与性质,考查形式灵活多样,主要有选择题、填空题和解答题,难度不大教学指导【本章重点】1轴对称图形的性质2角平分线、线段垂直平分线及等腰三角形的性质【本章难点】1利用线段、角、等腰三角形的轴对称性解决简单的计算和书写推理的过程2轴对称

2、与轴对称图形的区别与联系3利用轴对称的性质进行图案设计【本章思想方法】1体会分类讨论思想,如根据等腰三角形的特殊性,需分类讨论已知角是顶角还是底角,已知边是腰还是底边等2体会转化思想,如在利用垂直平分线的性质定理求三角形的周长时,把三角形周长转化为已知线段的和课时计划1 轴对称现象 1 课时2 探索轴对称的性质 1 课时3 简单的轴对称图形 3 课时4 利用轴对称进行设计 1 课时1 轴对称现象教学目标一、基本目标1经历观察生活中的轴对称现象、探索轴对称现象共同特征的过程,进一步积累数学活动经验和发展学生的空间观念2理解轴对称图形和成轴对称的图形的定义,能够识别这些图形并能指出它们的对称轴3欣

3、赏现实生活中的轴对称图形,体会轴对称在现实生活中的广泛应用和丰富的文化价值二、重难点目标【教学重点】通过对现实生活实例和典型图案的观察与分析,认识轴对称和轴对称图形,会找出简单的轴对称图形的对称轴【教学难点】理解轴对称图形和轴对称的联系与区别教学过程环节 1 自学提纲,生成问题【5 min 阅读】阅读教材 P115P117 的内容,完成下面练习【3 min 反馈】1如果一个平面图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形就叫做轴对称图形,这条直线叫做对称轴.这时,我们也说这个图形关于这条直线(成轴)对称.2如果两个平面图形沿一条直线折叠后能够完全重合,那么称这两个图形成轴对称

4、,这条直线叫做这两个图形的对称轴.3下列图形中是轴对称图形的有( B )A BC D4两个大小不同的圆可以组成如图中的五种图形,它们仍旧是轴对称图形,请找出每个图形的对称轴,并说一说它们的对称轴有什么特点解:如图所示:它们的对称轴均为经过两圆圆心的一条直线环节 2 合作探究,解决问题活动 1 小组讨论(师生互学)【例 1】判断下列图形是否为轴对称图形?如果是,说出它有几条对称轴【互动探索】(引发学生思考 )如何判断一个图形是否是轴对称图形?如何找轴对称图形的对称轴?【解答】(1)(3)(5)(6)(9)不是轴对称图形;(2)(4)(8)有 1 条对称轴;(7) 有 4 条对称轴;(10)有 2

5、 条对称轴【互动总结】(学生总结,老师点评 )判断一个图形是否为轴对称图形,关键是看能否找到一条直线,沿这条直线折叠,使它两旁的部分能够互相重合【例 2】图中有阴影的三角形与哪些三角形成轴对称?整个图形是轴对称图形吗?它共有几条对称轴?【互动探索】(引发学生思考 )可用两个图形成轴对称的概念来解决【解答】图中有阴影的三角形与三角形 1、3 成轴对称整个图形是轴对称图形,它共有 2 条对称轴【互动总结】(学生总结,老师点评 )(1)两个图形成轴对称与轴对称图形的联系与区别:两个图形成轴对称 轴对称图形操作方式相同:沿一条直线折叠沿直线折叠后,直线两旁的图形能完全重合联系可以相互转化:把成轴对称的

6、两个图形看作一个整体,就可以得到一个轴对称图形;把轴对称图形两旁的部分分别看作两个图形,它们就是成轴对称的两个图形成轴对称是对于两个图形而言 轴对称图形是对于一个图形而言两个图形分居一条直线两旁 一个图形被直线分成两部分区别折叠后,一个图形与另一个图形完全重合折叠后,图形的一部分与另一部分互相重合(即重合到自身上)(2)轴对称图形是一个具有特殊形状的图形,而两个图形成轴对称是指两个图形之间的形状与位置的关系活动 2 巩固练习(学生独学)1誉为全国第三大露天碑林的“浯溪碑林” ,摩崖上铭刻着 500 多方古今名家碑文,其中悬针篆文具有较高的历史意义和研究价值,下面四个悬针篆文文字明显不是轴对称图

7、形的是( C )2如图,某英语单词由四个字母组成,且四个字母都关于直线 l 对称,则这个英语单词的汉语意思为书.3试画出下列正多边形的所有对称轴,并完成表格正多边形的边数 3 4 5 6 7 对称轴的条数 3 4 5 6 7 根据上表,猜想正 n 边形有 n 条对称轴解:如图:4观察图中的各种图形,说明哪些图形放在一起可形成轴对称解:根据轴对称图形的性质得出:(1)和(6),(2) 和(4),(9)和(10)能形成轴对称图形活动 3 拓展延伸(学生对学)【例 3】轴对称在数学计算中有巧妙的应用如图 1,现要计算长方形中六个数字的和,我们发现,把长方形沿对称轴 l1 对折,重合的数字均为 4,故

8、六个数字的和为 3412;若沿对称轴 l2 对折,则六个数字的和可表示为 422 212.受上面方法的启发,请快速计算正方形(图 2)中各数字之和图 1 图 2【互动探索】利用轴对称图形对称位置上的两数相加和相等来进行简便计算【解答】如图所示,一条对角线上的数都是 5,若把这条对角线所在直线当作对称轴,把正方形对折一下,对称位置上的两数之和均为 10,这样正方形中各数字之和为101055125.【互动总结】(学生总结,老师点评 )数形结合是初中数学的一种重要思想方法,在求一组有特殊规律的数字的和时,经常会用到对称的思想及其相关的知识环节 3 课堂小结,当堂达标(学生总结,老师点评)轴对称现象E

9、rror!练习设计请完成本课时对应练习!2 探索轴对称的性质教学目标一、基本目标1经历探索轴对称性质的过程,积累数学活动经验,发展空间观念2理解轴对称的性质:在轴对称图形或两个成轴对称的图形中,对应点所连的线段被对称轴垂直平分,对应线段相等,对应角相等二、重难点目标【教学重点】探索并掌握轴对称的性质【教学难点】运用轴对称的性质作图及利用轴对称的性质解决一些实际问题教学过程环节 1 自学提纲,生成问题【5 min 阅读】阅读教材 P118P119 的内容,完成下面练习【3 min 反馈】1我们把沿对称轴折叠后能够重合的点叫做对应点,重合的线段叫做对应线段,重合的角叫做对应角.2轴对称的性质:在轴

10、对称图形或两个成轴对称的图形中,对应点所连的线段被对称轴垂直平分,对应线段相等,对应角相等.3画轴对称图形,首先应确定对称轴,然后找出对称点.4如图,五边形 ABCDE 是轴对称图形,线段 AF 所在直线为对称轴,找出图中所有相等的线段和相等的角解:相等的线段:ABAE ,CBDE ,CFDF;相等的角:BE,C D, BAFEAF,AFD AFC 5把如图所示的图形补成以直线 l 为对称轴的轴对称图形解:如图所示:环节 2 合作探究,解决问题活动 1 小组讨论(师生互学)【例 1】如图,ABC 和AED 关于直线 l 对称,若 AB2 cm,C 95 ,则AE _,D_.【互动探索】(引发学

11、生思考 )因为ABC 和AED 关于直线 l 对称,AB2 cm, C95 ,所以 AEAB 2 cm,DC95.【答案】2 cm 95【互动总结】(学生总结,老师点评 )解此类问题应先根据条件确定对应点,从而确定对应线段、对应角【例 2】画出ABC 关于直线 l 的对称图形【互动探索】(引发学生思考 )画已知图形关于直线对称的图形的关键是什么?【解答】如图所示:【互动总结】(学生总结,老师点评 )画一个图形关于某条直线对称的图形时,先确定一些特殊的点,然后作这些特殊点的对称点,顺次连结即可得到活动 2 巩固练习(学生独学)1如图,ABC 和AB C关于直线 l 对称,若A 50 ,C 30,

12、则B的度数为( D )A30 B50C90 D1002如图,直线 MN 是四边形 AMBN 的对称轴,与对角线交于点 Q,点 P 是直线 MN上面一点,下列判断错误的是( D )AAQBQ BAP BPCMAP MBP DANMNMB3如图,一种滑翔伞的形状是左右成轴对称的四边形 ABCD,其中BAD150,B 40,则BCD 的度数是 ( A )A130 B150C40 D654如图,将已知四边形分别在格点图中补成关于已知直线 l、m、n、p 为对称轴的轴对称的图形解:如图所示:5如图,在长方形的台球桌面上,选择适当的角度打击白球,可以使白球经过两次反弹后将黑球直接撞入袋中,此时12,34,

13、并且2390,4590.如果黑球与洞口的连线和台球桌面边缘的夹角530,那么1 应该等于多少度才能保证黑球准确入袋?请说明理由解:130才能保证黑球准确入袋理由如下:如图,因为530 ,所以7530.因为34,所以6730,所以2630,所以1230.即130才能保证黑球准确入袋活动 3 拓展延伸(学生对学)【例 3】如图,将长方形 ABCD 沿 DE 折叠,使点 A 落在 BC 上的点 F 处,若EFB 60,则 CFD( )A20 B30C40 D50【互动探索】根据图形翻折变换,得ADE 与FDE 关于直线 DE 成轴对称,所以ADEFDE,所以 EFDEAD90. 因为EFB60,所以

14、CFD90 EFB30.【答案】B【互动总结】(学生总结,老师点评 )折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,对应边和对应角相等环节 3 课堂小结,当堂达标(学生总结,老师点评)练习设计请完成本课时对应练习!3 简单的轴对称图形第 1 课时 等腰三角形教学目标一、基本目标1经历探索等腰三角形和等边三角形的性质的过程,掌握等腰三角形的轴对称性、三线合一、两底角相等等性质2能根据等腰三角形的性质解决一些简单的问题二、重难点目标【教学重点】等腰三角形、等边三角形的性质【教学难点】等腰三角形、等边三角形的性质及探索过程教学过程环节 1 自学提纲,生成问题【5 min 阅读】阅读

15、教材 P121P122 的内容,完成下面练习【3 min 反馈】1等腰三角形的性质:(1)等腰三角形是轴对称图形;(2)等腰三角形顶角的平分线、底边上的中线、底边上的高重合( 也称“三线合一”),它们所在的直线都是等腰三角形的对称轴;(3)等腰三角形的两个底角相等.2如图,在ABC 中,AB AC (1)因为 ADBC,所以BADCAD,BD CD;(2)因为 AD 是中线,所以 ADBC,BAD CAD;(3)因为 AD 是角平分线,所以 ADBC,BDCD;(4)因为 ABAC,所以BC.3完成教材 P121“想一想”:解:(1)等边三角形有三条对称轴,内角的平分线( 各边上的中线、各边上

16、的高)所在的直线为其对称轴(2)等边三角形的特征:三条边都相等,三个内角都相等,且每个内角都是 60;是轴对称图形;具有等腰三角形的一切特征环节 2 合作探究,解决问题活动 1 小组讨论(师生互学)【例 1】如图,在ABC 中,ABAC ,点 D 在 AC 上,且 BDBCAD,求ABC中各内角的度数【互动探索】(引发学生思考 )设A x,利用等腰三角形的性质和三角形内角和定理即可求得各角的度数【解答】因为 ABAC,BD BCAD ,所以ABC C BDC,AABD 设A x,则ABC C BDC ABDA2x.在ABC 中,因为 AABC C180,所以 x2x2x 180,解得 x36.

17、所以在ABC 中, A36,ABCC72.【互动总结】(学生总结,老师点评 )当题中等量关系或和差关系较多时,可考虑列方程解答,设未知数时,一般设较小的角的度数为 x.【例 2】如图,已知 ABAC,BD AC 于点 D 求证:BAD2DBC 【互动探索】(引发学生思考 )由BAD 2DBC,考虑作BAD 的平分线,即作等腰三角形的高,再根据“等角的余角相等”证明结论【证明】过点 A 作 AEBC 于点 E.因为 ABAC, AEBC,所以BAD2 2.因为 BDAC 于点 D,所以BDC90,所以2CCDBC90,所以DBC2,所以BAD2 DBC【互动总结】(学生总结,老师点评 )解决本题

18、的关键:(1)从要证的等式中角之间的数量关系,考虑利用等腰三角形“三线合一”作辅助线;(2) 在有直角的平面几何图形中,可用“等角的余角相等”证明角相等活动 2 巩固练习(学生独学)1已知等腰三角形的一个角为 80,则其顶角为( D )A20 B50 或 80C10 D20或 802如图,在ABC 中,AB AC ,BC 6 cm,AD 平分BAC,则 BD3 cm.3在ABC 中,AB AC5 ,A60 ,则 BC5.4在ABC 中,AB AC,过点 C 作 CNAB 且 CNAC,连结 AN 交 BC 于点 M.求证:BMCM.证明:因为 ABAC,CNAC,所以 ABCN, N CAN.

19、又因为 ABCN,所以BAMN ,所以BAMCAM,所以 AM 为BAC 的平分线又因为 ABAC ,所以 AM 为ABC 的边 BC 上的中线,所以 BMCM.活动 3 拓展延伸(学生对学)【例 3】已知ABC 是等腰三角形,且AB130,求A 的度数【互动探索】要求A ,需讨论 A 是等腰 ABC 的顶角还是底角,再结合三角形的内角和求解【解答】分情况讨论:当A 为顶角时,则 BC 因为AB C180 ,AB130 ,所以BC50,所以 A80.当C 为顶角时,则AB 因为AB 130,所以 A65.当B 为顶角时,则 AC 因为AB C180 ,AB130 ,所以AC50.综上所述,A

20、的度数可以为 80,65或 50.【互动总结】(学生总结,老师点评 )本题体现了分类讨论思想等腰三角形的两个底角相等,已知一个内角,则这个角可能是底角也可能是顶角本题易忽略讨论B 是顶角还是底角环节 3 课堂小结,当堂达标(学生总结,老师点评)等腰三角形Error!练习设计请完成本课时对应练习!第 2 课时 线段的垂直平分线教学目标一、基本目标1探索并了解线段垂直平分线的有关性质,并利用垂直平分线的性质解决一些实际问题2会用尺规作图作一条线段的垂直平分线3经历探索简单图形轴对称性的过程,进一步体验轴对称的特征,发展空间观念二、重难点目标【教学重点】垂直平分线的有关性质【教学难点】用尺规作图作线

21、段的垂直平分线,并利用垂直平分线的性质解决一些实际问题教学过程环节 1 自学提纲,生成问题【5 min 阅读】阅读教材 P123P124 的内容,完成下面练习【3 min 反馈】1线段是轴对称图形,垂直并且平分线段的直线是它的一条对称轴2线段的垂直平分线的定义:垂直于一条线段,并且平分这条线段的直线,叫做这条线段的垂直平分线,简称中垂线.3线段垂直平分线的性质:线段垂直平分线上的点到这条线段两个端点的距离相等.4如图,直线 CD 是线段 AB 的垂直平分线,P 为直线 CD 上的一点,已知线段PA 5,则线段 PB 的长为( B )A6 B5 C4 D3环节 2 合作探究,解决问题活动 1 小

22、组讨论(师生互学)【例 1】详细过程见教材 P124 例 1.【例 2】如图,在ABC 中,ABAC 20 cm,DE 垂直平分 AB,垂足为点 E,交 AC于点 D 若DBC 的周长为 35 cm,求 BC 的长【互动探索】(引发学生思考 )DE 垂直平分 ABADBD DBC 的周长为 35 cm BCAD CD35 cm 求出 BC【解答】因为 DE 垂直平分 AB,所以 ADBD 因为DBC 的周长为 35 cm,即 BCBDCD35 cm,所以 BCADCD35 cm.又因为 ACADDC20 cm,所以 BC352015( cm)【互动总结】(学生总结,老师点评 )利用线段垂直平分

23、线的性质,可以实现线段之间的相互转化,从而求出未知线段的长活动 2 巩固练习(学生独学)1如图,在ABC 中,AC 的垂直平分线分别交 AC、BC 于 E、D 两点,CE4,ABC 的周长是 25,则ABD 的周长为( C )A13 B15C17 D192如图,在ABC 中,DE 是 AC 的垂直平分线,且分别交 BC、AC 于点D、E , B 60,C25,则BAD 为( B )A50 B70C75 D803如图,在ABC 中,AC20 cm,DE 垂直平分 AB,垂足为点 E,交 AC 于点D 若DBC 的周长为 35 cm,则 BC 长为 15 cm.4如图,在 RtABC 中,B90,

24、ED 是 AC 的垂直平分线,交 AC 于点 D,交 BC于点 E.已知BAE10,求 C 的度数解:因为B 90,BAE10,所以BEA80.因为 ED 是 AC 的垂直平分线,所以 AEEC,所以 C EAC因为BAC B C180 ,BACBAEEAC,所以 10EAC90C 180.所以CEAC40.活动 3 拓展延伸(学生对学)【例 3】如图,在四边形 ABCD 中,ADBC,E 为 CD 的中点,连结AE、 BE,BE AE ,延长 AE 交 BC 的延长线于点 F.求证:(1)FCAD ;(2)ABBCAD 【互动探索】(1)根据 ADBC 可知 ADEECF,再根据 E 是 C

25、D 的中点可证得ADEFCE,从而根据全等三角形的性质得到结论;(2) 根据线段垂直平分线的性质判断出AB BF 即可【证明】(1)因为 ADBC,所以ADE ECF.因为 E 是 CD 的中点,所以 DEEC 又因为AED CEF,所以ADE FCE,所以 FCAD (2)因为ADEFCE,所以 AEEF,ADCF.因为 BEAE,所以 BE 是线段 AF 的垂直平分线,所以 ABBFBCCF.因为 ADCF,所以 ABBC AD【互动总结】(学生总结,老师点评 )此题主要考查线段的垂直平分线的性质等几何知识线段垂直平分线上的点到线段两个端点的距离相等,利用它可以证明线段相等【例 4】如图,

26、A、B、C 三点表示三个工厂,要建立一个供水站,使它到这三个工厂的距离相等,求作供水站的位置【互动探索】根据线段垂直平分线上的点到这条线段两个端点的距离相等作图【解答】如图,连结 AB、AC,分别作出 AB、AC 的垂直平分线,两线的交点 P 就是供水站的位置【互动总结】(学生总结,老师点评 )此题主要考查了应用作图,关键是掌握线段垂直平分线上的点到这条线段两个端点的距离相等环节 3 课堂小结,当堂达标(学生总结,老师点评)线段的垂直平分线Error!练习设计请完成本课时对应练习!第 3 课时 角平分线的性质教学目标一、基本目标1经历探索角的轴对称性的过程,理解并掌握角平分线的有关性质,并能运

27、用角平分线的性质解决一些实际问题2掌握作已知角的平分线的尺规作图方法二、重难点目标【教学重点】掌握角平分线的性质,会用尺规作已知角的平分线【教学难点】角平分线的性质的应用教学过程环节 1 自学提纲,生成问题【5 min 阅读】阅读教材 P125P126 的内容,完成下面练习【3 min 反馈】1角是轴对称图形,角平分线所在的直线是它的对称轴2角平分线上的点到这个角的两边的距离相等.3如图,已知 BG 是ABC 的平分线,DEAB 于点 E, DFBC 于点 F,DE6,则 DF 的长为( D )A2 B3 C4 D64如图,AD 是ABC 中BAC 的平分线,DE AB 于点 E,AC7,DE

28、4,则ADC 的面积等于 14.环节 2 合作探究,解决问题活动 1 小组讨论(师生互学)【例 1】详细过程见教材 P126 例 2.【例 2】如图,在ABC 中,ACB 90 ,BE 平分ABC,DEAB 于点 D,如果AC3 cm,那么 AE、AC、DE 这三条线段之间有怎样的数量关系?请说明理由【互动探索】(引发学生思考 )根据角平分线上的点到角的两边距离相等可得 DECE,从而可知 AE、 AC、DE 之间的数量关系【解答】AEDE AC3 cm. 理由如下:因为ACB 90,BE 平分 ABC,DEAB,所以 DECE,所以 ACAE CE3 cm.【互动总结】(学生总结,老师点评

29、)本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质是解题的关键活动 2 巩固练习(学生独学)1观察图中尺规作图痕迹,下列说法错误的是( C )AOE 是AOB 的平分线BOCODC点 C、D 到 OE 的距离不相等DAOEBOE2如图,在 RtACB 中,C90 ,AD 平分BAC,若 BC16,BD10,则点 D到 AB 的距离是 ( D )A9 B8 C7 D63如图,ABCD,BP 和 CP 分别平分ABC 和DCB,AD 过点 P,且与 AB 垂直,垂足为点 A,交 CD 于点 D 若 AD8,则点 P 到 BC 的距离是 4.4如图,已知 BD 是ABC 的平分线,DEBC

30、 于点 E,S ABC 36 cm2,AB12 cm, BC18 cm,则 DE 的长为 2.4 cm.教师点拨:过点 D 作 DFAB 于点 F.根据角平分线上的点到角的两边距离相等,得DEDF,再根据 SABCS ABDS BCD列方程求解即可5如图,BD 是ABC 的平分线,ABBC,点 P 在 BD 上,PMAD ,PN CD,垂足分别为点 M、N.试说明:PMPN.证明:因为 BD 是ABC 的平分线,所以ABD CBD又因为 ABBC ,BD BD,所以ABD CBD(SAS),所以ADB CDB,即 DB 是ADC 的平分线因为 PMAD,PNCD,所以 PMPN.活动 3 拓展

31、延伸(学生对学)【例 3】如图,直线 l1、l 2、l 3 表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,你能说出可供选择的地址有几处吗?【互动探索】根据角平分线的性质,得货物中转站必须是三条相交直线所组成的三角形的内角或外角平分线的交点【解答】因为中转站要到三条公路的距离都相等,所以货物中转站必须是三条相交直线所组成的三角形的内角或外角平分线的交点而外角平分线有 3 个交点,内角平分线有 1 个交点,所以货物中转站可以供选择的地址有 4 个【互动总结】(学生总结,老师点评 )本题主要考查了应用与设计作图,关键是掌握角平分线的性质:角平分线上的点到这个角的两边的距离

32、相等环节 3 课堂小结,当堂达标(学生总结,老师点评)角的轴对称性Error!练习设计请完成本课时对应练习!4 利用轴对称进行设计教学目标一、基本目标1经历观察、分析、作图、折叠等过程,进一步理解轴对称及其性质,发展空间观念2能够利用轴对称进行一些图案设计3欣赏中国民间剪纸艺术中的一些图案,体会轴对称在现实生活中的广泛应用和丰富的文化价值二、重难点目标【教学重点】掌握有关轴对称图形画图的操作技能,并能利用图形之间的轴对称关系来设计轴对称图形【教学难点】掌握有关画图的技能及设计轴对称图形教学过程环节 1 自学提纲,生成问题【5 min 阅读】阅读教材 P128P129 的内容,完成下面练习【3

33、min 反馈】1轴对称的性质:在轴对称图形中,(1)对应点所连的线段被对称轴垂直平分;(2)对应线段相等,对应角相等.2如图,用数学的眼光欣赏这个蝴蝶图案,它的一种数学美体现在蝴蝶图案的( A )A轴对称性 B蝴蝶效应C颜色鲜艳 D数形结合3下列有关“安全提示”的图案中,可以看作轴对称图形的是( C )4如图的四个图案都是轴对称图形,它们分别有着自己的含义,如图 1 可以代表针织品、联通;图 2 可以代表法律、公正;图 3 可以代表航海、坚固;图 4 可以代表邮政、友谊等请你自己也来设计一个轴对称图形,并请说明你所设计的轴对称图形的含义解:答案不唯一,如图:环节 2 合作探究,解决问题活动 1

34、 小组讨论(师生互学)【例 1】在 33 的正方形网格图中,有格点ABC 和DEF,且ABC 和DEF 关于某直线成轴对称,请在如图给出的图中画出 4 个这样的DEF.(每个 33 正方形网格图中限画一种,若两个图形中的对称轴是平行的,则视为一种)【互动探索】(引发学生思考 )根据对称图形关于某直线对称,找出不同的对称轴,画出不同的图形即可【解答】如图,DEF 即为所求( 答案不唯一)【互动总结】(学生总结,老师点评 )本题考查的是利用轴对称设计图案,熟知轴对称的性质是解答此题的关键解题时注意:若两个图形中的对称轴是平行的,则视为一种活动 2 巩固练习(学生独学)1下列古代的吉祥图案中,不是轴

35、对称图形的是( C )2如图是由 9 个小等边三角形构成的图形,其中已有两个被涂黑,若再涂黑一个,则整个被涂黑的图案构成轴对称图形的方法有 3 种3用四块如图 1 所示的是小正方形瓷砖拼成一个轴对称的大正方形图案(如图 2)请在图 3、图 4 中分别给出两种不同的拼法,且使拼出的图案为轴对称图形解:如图所示:活动 3 拓展延伸(学生对学)【例 2】观察设计:(1)观察如图 1图 4 中阴影部分构成的图案,请写出这四个图案都具有的两个共同特征;(2)在图 5 的网格中,设计一个新的图案,使该图案同时具有你在(1) 中所写出的两个共同特征( 注意:新图案与如图 1图 4 的图案不能重合)【互动探索

36、】(1)利用已知图形的特征分别得出其共同的特征; (2)利用(1)所写的特征画出符合题意的图形即可【解答】(1)答案不唯一,如:所给的四个图案具有的共同特征可以是:都是轴对称图形;面积都等于四个小正方形的面积之和;都是直线型图案;图案中不含钝角等(2)答案不唯一,只要设计的图案同时具有所给出的两个共同特征均正确例如:同时具备特征、的部分图案如图:【互动总结】(学生总结,老师点评 )此题主要考查了利用轴对称设计图案,正确把握图形的特征是解题关键环节 3 课堂小结,当堂达标(学生总结,老师点评)利 用 轴 对 称进 行 设 计 欣 赏 图 案动 手 操 作 体 验 轴 对 称 在 现 实生 活 中 的 应 用 和 文化 价 值练习设计请完成本课时对应练习!

展开阅读全文
相关资源
相关搜索
资源标签

当前位置:首页 > 初中 > 初中数学 > 北师大版 > 七年级下册