决胜2019中考数学之模型解题高分攻略专题06 线段最值问题模型解题(学生版)

上传人:hua****011 文档编号:133511 上传时间:2020-04-14 格式:DOC 页数:5 大小:549.50KB
下载 相关 举报
决胜2019中考数学之模型解题高分攻略专题06 线段最值问题模型解题(学生版)_第1页
第1页 / 共5页
决胜2019中考数学之模型解题高分攻略专题06 线段最值问题模型解题(学生版)_第2页
第2页 / 共5页
决胜2019中考数学之模型解题高分攻略专题06 线段最值问题模型解题(学生版)_第3页
第3页 / 共5页
决胜2019中考数学之模型解题高分攻略专题06 线段最值问题模型解题(学生版)_第4页
第4页 / 共5页
决胜2019中考数学之模型解题高分攻略专题06 线段最值问题模型解题(学生版)_第5页
第5页 / 共5页
亲,该文档总共5页,全部预览完了,如果喜欢就下载吧!
资源描述

1、 1 专题专题 06 线段最值问题模型解题线段最值问题模型解题 解决几何最值问题的理论依据有:两点之间线段最短;垂线段最短;三角形两边之和大于第三 边或三角形两边之差小于第三边(重合时取到最值);定圆中的所有弦中,直径最长;圆外一点与圆心 的连线上,该点和此直线与圆的近交点距离最短、远交点距离最长.根据不同特征转化从而减少变量是解决 最值问题的关键,直接套用基本模型是解决几何最值问题的高效手段. 解题模型一解题模型一 图形图形 转化转化 直线 l 外有一定点 A,点 B 是直线 l 上的一个动点, 求 AB 的最小值. 过定点 A 作 ABl 于点 B. 针对训练针对训练 1.(2018长春)

2、如图,在ABCD 中,AD=7,AB=2,B=60E 是边 BC 上任意一点,沿 AE 剪开,将 ABE 沿 BC 方向平移到DCF 的位置,得到四边形 AEFD,则四边形 AEFD 周长的最小值为 解题模型二解题模型二 图形图形 转化转化 A,B 为定点,l 为定直线,P 为直线 l 上的一个动点, 求 APBP 的最小值. 作其中一个定点关于定直线l 的对称点, 连接对称点 与另一定点. 点 A 是 l1上的动点,B,P 是定点,求 PA+AB 的最小 值. 作点 P 关于直线 l1的对称点 P,则 PB 为 PA+AB 的最小值. 针对训练针对训练 2 2 (2018天津)如图,在正方形

3、 ABCD 中,E,F 分别为 AD,BC 的中点,P 为对角线 BD 上的一个动点,则 下列线段的长等于 AP+EP 最小值的是( ) AAB BDE CBD DAF 3.(2018十堰)如图,RtABC 中,BAC=90,AB=3,AC=6,点 D,E 分别是边 BC,AC 上的动点,则 DA+DE 的最小值为 解题模型三解题模型三 图形图形 转化转化 来源:Zxxk.Com P 为定点,M,N 为定直线上的动点,求PMN 周长 的最小值. 过定点 P 分别作关于两条定直线的对称点, 连接两对 称点. 求直线 l1,l2上的点 M,N,使得四边形 PQMN 的周长 最小. 作定点 Q 关于

4、直线 l1的对称点 Q,作定点 P 关于直 线 l2的对称点 P,连接 QP,分别交直线 l1,l2 于点 M,N 来源: 针对训练针对训练 4 (2015营口)如图,点 P 是AOB 内任意一点,OP=5cm,点 M 和点 N 分别是射线 OA 和射线 OB 上的 动点,PMN 周长的最小值是 5cm,则AOB 的度数是( )来源:ZXXK 3 A25 B30 C35 D40 5 (2015玉林)如图,已知正方形 ABCD 边长为 3,点 E 在 AB 边上且 BE=1,点P,Q 分别是边 BC,CD 的 动点(均不与顶点重合) ,当四边形 AEPQ 的周长取最小值时,四边形 AEPQ 的面

5、积是 解题模型四解题模型四 图形图形 转化转化 直线 mn,在 m,n 上分别求点 M,N,使 MNm, 且 AMMNBN 的值最小. 将点 A 向下平移 MN 的单位长度得 A,连接 AB,交 n 于点 N,过点 N 作 MNm 于 M,点 M,N即为所 求. 在直线 l 上求两点 M,N(M 在左) ,使 MNa,并 使 AMMNNB 的值最小. 将点 A 向右平移 a 个长度单位得 A, 作 A关于 l 的对 称点 A,连接 AB,交直线 l 于点 N,将 N 点向左平 移 a 个单位长度得 M. 针对训练针对训练 6.(2017内江)如图,已知直线 l1l2,l1、l2之间的距离为 8

6、,点 P 到直线 l1的距离为 6,点 Q 到直线 l2 的距离为 4,PQ=4,在直线 l1上有一动点 A,直线 l2上有一动点 B,满足 ABl2,且 PA+AB+BQ 最小, 此时 PA+BQ= 4 解题模型五解题模型五 图形图形 转化转化 P 是圆上一动点,求 AP 的最大值和最小值 当 P 点运动到点 B 时,AP 取得最小值;当 P 点运动 到点 C 时,AP 取得最大值. P 为圆内一定点,求过点 P 的弦的最小值与最大值. AB 是过圆 O 内定点 P 的弦.当 OPAB 时,过点 P 的 弦的最小值为线段 AB;过点 P 的弦的最大值为圆的 直径. 针对训练针对训练 7 (2

7、015自贡)如图,在矩形 ABCD 中,AB=4,AD=6,E 是 AB 边的中点,F 是线段 BC 上的动点,将EBF 沿 EF 所在直线折叠得到EBF,连接 BD,则 BD 的最小值是( ) A22 B6 C22 D4 8 (2018内江)如图,以 AB 为直径的O 的圆心 O 到直线 l 的距离 OE=3,O 的半径 r=2,直线 AB 不垂 直于直线 l, 过点 A, B 分别作直线 l 的垂线, 垂足分别为点 D, C, 则四边形 ABCD 的面积的最大值为 5 解题模型六解题模型六 图例 圆柱 展开 则 AB2BA2BB2 长 方 体 阶梯 问题 基本 思路 将立体图形展开成平面图

8、形利用两点之间线段最短确定最短路线构造 直角三角形利用勾股定理求解. 针对训练针对训练 9 (2018黄冈)如图,圆柱形玻璃杯高为 14cm,底面周长为 32cm,在杯内壁离杯底 5cm 的点 B 处有一滴 蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿 3cm 与蜂蜜相对的点 A 处,则蚂蚁从外壁 A 处到内壁 B 处 的最短距离为 cm(杯壁厚度不计) 10 (2017东营)我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕 而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺, 则该圆柱的高为 20 尺,底面周长为 3 尺,有葛藤自点 A 处缠绕而上,绕五周后其末端恰好到达点 B 处, 则问题中葛藤的最短长度是 尺

展开阅读全文
相关资源
相关搜索
资源标签

当前位置:首页 > 初中 > 初中数学 > 数学中考 > 一轮复习