六年级奥数第23讲-分数百分数行程问题(学)

上传人:hua****011 文档编号:125305 上传时间:2020-03-08 格式:DOC 页数:11 大小:157.50KB
下载 相关 举报
六年级奥数第23讲-分数百分数行程问题(学)_第1页
第1页 / 共11页
六年级奥数第23讲-分数百分数行程问题(学)_第2页
第2页 / 共11页
六年级奥数第23讲-分数百分数行程问题(学)_第3页
第3页 / 共11页
六年级奥数第23讲-分数百分数行程问题(学)_第4页
第4页 / 共11页
六年级奥数第23讲-分数百分数行程问题(学)_第5页
第5页 / 共11页
点击查看更多>>
资源描述

1、学科教师辅导讲义学员编号: 年 级:六年级 课 时 数:3学员姓名:辅导科目:奥数学科教师: 授课主题第23讲 分数百分数行程问题授课类型T同步课堂P实战演练S归纳总结教学目标1. 理解行程问题中的各种比例关系.2. 掌握寻找比例关系的方法来解行程问题授课日期及时段T(Textbook-Based)同步课堂知识梳理 比例的知识是小学数学最后一个重要内容,从某种意义上讲仿佛扮演着一个小学“压轴知识点”的角色。从一个工具性的知识点而言,比例在解很多应用题时有着“得天独厚”的优势,往往体现在方法的灵活性和思维的巧妙性上,使得一道看似很难的题目变得简单明了。比例的技巧不仅可用于解行程问题,对于工程问题

2、、分数百分数应用题也有广泛的应用。我们常常会应用比例的工具分析2个物体在某一段相同路线上的运动情况,我们将甲、乙的速度、时间、路程分别用来表示,大体可分为以下两种情况:1. 当2个物体运行速度在所讨论的路线上保持不变时,经过同一段时间后,他们走过的路程之比就等于他们的速度之比。,这里因为时间相同,即,所以由得到,甲乙在同一段时间t内的路程之比等于速度比2. 当2个物体运行速度在所讨论的路线上保持不变时,走过相同的路程时,2个物体所用的时间之比等于他们速度的反比。,这里因为路程相同,即,由得,甲乙在同一段路程s上的时间之比等于速度比的反比。典例分析 考点一:比例初步利用简单倍比关系进行解题例1、

3、甲、乙两车从相距330千米的A、B两城相向而行,甲车先从A城出发,过一段时间后,乙车才从B城出发,并且甲车的速度是乙车速度的。当两车相遇时,甲车比乙车多行驶了30千米,则甲车开出 千米,乙车才出发。例2、上午8点8分,小明骑自行车从家里出发,8分钟后,爸爸骑摩托车去追他,在离家4千米的地方追上了他.然后爸爸立即回家,到家后又立刻回头去追小明,再追上小明的时候,离家恰好是8千米,这时是几点几分?例3、从甲地到乙地全部是山路,其中上山路程是下山路程的。一辆汽车上山速度是下山速度的一半,从甲地到乙地共行7时。这辆汽车从乙地返回甲地需要多少时间?例4、一辆小汽车与一辆大卡车在一段9千米长的狭路上相遇,

4、必须倒车,才能继续通行已知小汽车的速度是大卡车速度的3倍,两车倒车的速度是各自速度的,小汽车需倒车的路程是大卡车需倒车的路程的4倍如果小汽车的速度是每小时50千米,那么要通过这段狭路最少用多少小时?考点二:时间相同速度比等于路程比例1、甲、乙分别从A,B两地同时相向出发。相遇时,甲、乙所行的路程比是ab。从相遇算起,甲到达B地与乙到达A地所用的时间比是多少?例2、甲、乙两人分别从两地同时出发,相向而行。出发时他们的速度之比是3:2,相遇后,甲的速度提高20%,乙的速度提高,这样当甲到达地时,乙离地还有41千米,那么两地相遇_千米。 例3、甲、乙二人分别从 A、 B 两地同时出发,相向而行,甲、

5、乙的速度之比是 4 : 3,二人相遇后继续行进,甲到达 B 地和乙到达 A地后都立即沿原路返回,已知二人第二次相遇的地点距第一次相遇的地点 30千米,则 A、 B 两地相距多少千米?例4、一列火车出发 1 小时后因故停车 0.5 小时,然后以原速的前进,最终到达目的地晚1.5 小时若出发 1 小时后又前进 90 公里再因故停车 0.5 小时,然后同样以原速的前进,则到达目的地仅晚1 小时,那么整个路程为多少公里?例5、一辆汽车按计划行驶了小时,剩下的路程用计划速度的继续行驶,到达目的地的时间比计划的时间迟了2时。如果按计划速度行驶的路程再增加 60千米,那么到达目的地的时间比计划时间只迟1时。

6、问:计划速度是多少?全程有多远?P(Practice-Oriented)实战演练实战演练 课堂狙击1.甲乙两地相距12千米,上午10:45一位乘客乘出租车从甲地出发前往乙地,途中,乘客问司机距乙地还有多远,司机看了计程表后告诉乘客:已走路程的加上未走路程的2倍,恰好等于已走的路程,又知出租车的速度是30千米/小时,那么现在的时间是 。2.欢欢和贝贝是同班同学,并且住在同一栋楼里早晨 7 : 40 ,欢欢从家出发骑车去学校, 7 : 46 追上了一直匀速步行的贝贝;看到身穿校服的贝贝才想起学校的通知,欢欢立即调头,并将速度提高到原来的 2倍,回家换好校服,再赶往学校;欢欢 8 : 00赶到学校时

7、,贝贝也恰好到学校如果欢欢在家换校服用去 6分钟且调头时间不计,那么贝贝从家里出发时是几点几分3.甲、乙两车同时从 A地出发,不停地往返行驶于 A、B 两地之间已知甲车的速度比乙车快,并且两车出发后第一次和第二次相遇都在途中 C 地甲车的速度是乙车速度的多少倍?4.一段路程分为上坡、平路、下坡三段,各段路程的长度之比是123,某人走这三段路所用的时间之比是456。已知他上坡时每小时行2.5千米,路程全长为20千米。此人走完全程需多长时间?5.一段路程分为上坡、平路、下坡三段,各段路程的长度之比是235,某人骑车走这三段路所用的时间之比是654。已知他走平路时速度为4.5千米时,全程用了5时。问

8、:全程多少千米?6.甲、乙二人分别从 A、 B 两地同时出发,相向而行,甲、乙的速度之比是 4 : 3,二人相遇后继续行进,甲到达 B 地和乙到达 A地后都立即沿原路返回,已知二人第二次相遇的地点距第一次相遇的地点 30千米,则 A、 B 两地相距多少千米?7.甲、乙两车分别从 A、B 两地出发,在 A、B 之间不断往返行驶,已知甲车的速度是乙车的速度的,并且甲、乙两车第 2007 次相遇(这里特指面对面的相遇)的地点与第 2008 次相遇的地点恰好相距 120 千米,那么,A、B 两地之间的距离等于多少 千米? 8.小明和小光同时从解放军营地回校执行任务,小光步行速度是小明的倍,营地有一辆摩

9、托车,只能搭乘一人,它的速度是小明步行速度的16倍。为了使小光和小明在最短时间内到达,小明和小光需要步行的距离之比是多少? 课后反击1.明明每天早上7:00从家出发上学,7:30到校。有一天,明明6:50就从家出发,他想:“我今天出门早,可以走慢点。”于是他每分钟比平常少走lO米,结果他到校时比往常迟到了5分钟。明明家离学校_米。2.小红从家步行去学校如果每分钟走120米,那么将比预定时间早到5分钟:如果每分钟走90米,则比预定时间迟到3分钟,那么小红家离学校有多远?3.在一圆形跑道上,甲从 A 点、乙从 B 点同时出发反向而行,6 分后两人相遇,再过4 分甲到达 B 点,又过 8 分两人再次

10、相遇.甲、乙环行一周各需要多少分?4.一辆汽车从甲地开往乙地,如果车速提高 20%可以提前1小时到达如果按原速行驶一段距离后,再将速度提高 30% ,也可以提前1小时到达,那么按原速行驶了全部路程的几分之几?5.一辆车从甲地开往乙地,如果把车速提高20,那么可以比原定时间提前1时到达;如果以原速行驶100千米后再将车速提高30,那么也比原定时间提前1时到达。求甲、乙两地的距离。6.B地在A,C两地之间。甲从B地到A地去,甲出发后1时乙从B地出发到C地,乙出发后1时丙突然想起要通知甲、乙一件重要事情,于是从B地出发骑车去追赶甲和乙。已知甲、乙的速度相等,丙的速度是甲、乙速度的3倍,为使丙从B地出

11、发到最终赶回B地所用时间最少,丙应当先追甲再返回追乙,还是先追乙再返回追甲?7.大、小客车从甲、乙两地同时相向开出,大、小客车的速度比为45,两车开出后60分相遇,并继续前进。问:大客车比小客车晚多少分到达目的地?S(Summary-Embedded)归纳总结重点回顾 几个基本量之间的运算关系1、基本关系:路程速度*时间;2、相遇问题(相向而行):相遇时两种运动物体的行程和等于总路程(相遇时间相等);关系式: 甲走的路程+乙走的路程=总路程; 3、追击问题:同时不同地:前者走的路程+两者间距离=追者走的路程,同地不同时:前者所用时间-多用时间=追这所用时间;追及路程速度差=追及时间 追及路程追

12、及时间=速度差 速度差追及时间=追及路程追及路程速度差=追及时间 追及路程追及时间=速度差 速度差追及时间=追及路程4、环形跑道同向追及:前者走的路程-后者走的路程=环形周长;反向相遇:甲走的路程+乙走的路程=环形周长。名师点拨 解题方法:1,审题:看题目有几个人或物参与; 看题目时间:“再过多长时间” 就是从此时开始计时,“多长时间 后”就是从开始计时 看地点是指是同地还是两地甚至更多。 看方向是同向、背向还是相向 看事件指的是结果是相遇还是追及 相遇问题中一个重要的环节是确定相遇地点,准确找到相遇地点对我们解题有很大帮助,一些是题目中直接给出在哪里相遇,有些则需要我们自己根据两人速度来判断。 追击问题中一个重要环节就是确定追上地点,从而找到路程差。比如“用10秒钟快比慢多跑100米”我们立刻知道快慢的速度差。这个是追击问题经常用到的,同过路程差求速度差 。 2,简单题利用公式 3,复杂题,尤其是多人多次相遇,一定要画路径图,即怎么走的线路画出来。相遇问题就找路程和,追击问题就找路程差 学霸经验 本节课我学到 我需要努力的地方是

展开阅读全文
相关资源
相关搜索
资源标签

当前位置:首页 > 小学 > 小学数学 > 奥数 > 六年级