1、中考数学基础复习专题(八)三角形【知识要点】 知识点1 三角形的边、角关系三角形任何两边之和大于第三边;三角形任何两边之差小于第三边;三角形三个内角的和等于180;三角形三个外角的和等于360;三角形一个外角等于和它不相邻的两个内角的和;三角形一个外角大于任何一个和它不相邻的内角。知识点2 三角形的主要线段和外心、内心三角形的角平分线、中线、高;三角形三边的垂直平分线交于一点,这个点叫做三角形的外心,三角形的外心到各顶点的距离相等;三角形的三条角平分线交于一点,这个点叫做三角形的内心,三角形的内心到三边的距离相等;连结三角形两边中点的线段叫做三角形的中位线,三角形的中位线平行于第三边且等于第三
2、边的一半。知识点3 等腰三角形等腰三角形的识别:有两边相等的三角形是等腰三角形;有两角相等的三角形是等腰三角形(等角对等边);三边相等的三角形是等边三角形;三个角都相等的三角形是等边三角形;有一个角是60的等腰三角形是等边三角形。等腰三角形的性质:等边对等角;等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合;等腰三角形是轴对称图形,底边的中垂线是它的对称轴;等边三角形的三个内角都等于60。知识点4 直角三角形直角三角形的识别:有一个角等于90的三角形是直角三角形;有两个角互余的三角形是直角三角形;勾股定理的逆定理:如果一个三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形。
3、直角三角形的性质:直角三角形的两个锐角互余;直角三角形斜边上的中线等于斜边的一半;勾股定理:直角三角形两直角边的平方和等于斜边的平方。知识点5 全等三角形定义、判定、性质知识点6 相似三角形知识点7 锐角三角函数与解直角三角形【复习点拨】(1)掌握三角形、三角形的全等、相似及解直角三角形的有关概念。(2)利用三角形的相似、全等及解直角三角形的知识进行计算、解答有关综合题。(3)培养学生的转化、数形结合、及分类讨论的数学思想的能力【典例解析】1三角形的下列线段中能将三角形的面积分成相等两部分的是()A中线B角平分线C高D中位线【考点】K3:三角形的面积;K2:三角形的角平分线、中线和高【分析】根
4、据等底等高的三角形的面积相等解答【解答】解:三角形的中线把三角形分成两个等底同高的三角形,三角形的中线将三角形的面积分成相等两部分故选A2如图,ABC中,D,E两点分别在AB,BC上,若AD:DB=CE:EB=2:3,则DBE与ADC的面积比为()A3:5B4:5C9:10D15:16【考点】K3:三角形的面积【分析】根据三角形面积求法进而得出SBDC:SADC=3:2,SBDE:SDCE=3:2,即可得出答案【解答】解:AD:DB=CE:EB=2:3,SBDC:SADC=3:2,SBDE:SDCE=3:2,设SBDC=3x,则SADC=2x,SBED=1.8x,SDCE=1.2x,故DBE与
5、ADC的面积比为:1.8x:2x=9:10故选:C3三角形的重心是()A三角形三条边上中线的交点B三角形三条边上高线的交点C三角形三条边垂直平分线的交点D三角形三条内角平行线的交点【考点】K5:三角形的重心【分析】根据三角形的重心是三条中线的交点解答【解答】解:三角形的重心是三条中线的交点,故选:A4如图,已知在RtABC中,C=90,AC=BC,AB=6,点P是RtABC的重心,则点P到AB所在直线的距离等于()A1BCD2【考点】K5:三角形的重心;KW:等腰直角三角形【分析】连接CP并延长,交AB于D,根据重心的性质得到CD是ABC的中线,PD=CD,根据直角三角形的性质求出CD,计算即
6、可【解答】解:连接CP并延长,交AB于D,P是RtABC的重心,CD是ABC的中线,PD=CD,C=90,CD=AB=3,AC=BC,CD是ABC的中线,CDAB,PD=1,即点P到AB所在直线的距离等于1,故选:A5如图,直角ABC中,B=30,点O是ABC的重心,连接CO并延长交AB于点E,过点E作EFAB交BC于点F,连接AF交CE于点M,则的值为()ABCD【考点】K5:三角形的重心;S9:相似三角形的判定与性质【分析】根据三角形的重心性质可得OC=CE,根据直角三角形的性质可得CE=AE,根据等边三角形的判定和性质得到CM=CE,进一步得到OM=CE,即OM=AE,根据垂直平分线的性
7、质和含30的直角三角形的性质可得EF=AE,MF=EF,依此得到MF=AE,从而得到的值【解答】解:点O是ABC的重心,OC=CE,ABC是直角三角形,CE=BE=AE,B=30,FAE=B=30,BAC=60,FAE=CAF=30,ACE是等边三角形,CM=CE,OM=CECE=CE,即OM=AE,BE=AE,EF=AE,EFAB,AFE=60,FEM=30,MF=EF,MF=AE,=故选:D 6在ABC中,已知BD和CE分别是边AC、AB上的中线,且BDCE,垂足为O若OD=2cm,OE=4cm,则线段AO的长度为4cm【考点】K5:三角形的重心;KQ:勾股定理【分析】连接AO并延长,交B
8、C于H,根据勾股定理求出DE,根据三角形中位线定理求出BC,根据直角三角形的性质求出OH,根据重心的性质解答【解答】解:连接AO并延长,交BC于H,由勾股定理得,DE=2,BD和CE分别是边AC、AB上的中线,BC=2DE=4,O是ABC的重心,AH是中线,又BDCE,OH=BC=2,O是ABC的重心,AO=2OH=4,故答案为:47在ABC中,A:B:C=2:3:4,则A的度数为40【考点】K7:三角形内角和定理【分析】直接用一个未知数表示出A,B,C的度数,再利用三角形内角和定理得出答案【解答】解:A:B:C=2:3:4,设A=2x,B=3x,C=4x,A+B+C=180,2x+3x+4x
9、=180,解得:x=20,A的度数为:40故答案为:408在“三角尺拼角”实验中,小明同学把一副三角尺按如图所示的方式放置,则1=120【考点】K8:三角形的外角性质;K7:三角形内角和定理【分析】根据三角形的外角的性质计算即可【解答】解:由三角形的外角的性质可知,1=90+30=120,故答案为:1209如图,在四边形ABCD中,AB=AD,CB=CD,对角线AC,BD相交于点O,下列结论中:ABC=ADC;AC与BD相互平分;AC,BD分别平分四边形ABCD的两组对角;四边形ABCD的面积S=ACBD正确的是(填写所有正确结论的序号)【考点】KD:全等三角形的判定与性质;KG:线段垂直平分
10、线的性质【分析】证明ABCADC,可作判断;由于AB与BC不一定相等,则可知此两个选项不一定正确;根据面积和求四边形的面积即可【解答】解:在ABC和ADC中,ABCADC(SSS),ABC=ADC,故结论正确;ABCADC,BAC=DAC,AB=AD,OB=OD,ACBD,而AB与BC不一定相等,所以AO与OC不一定相等,故结论不正确;由可知:AC平分四边形ABCD的BAD、BCD,而AB与BC不一定相等,所以BD不一定平分四边形ABCD的对角;故结论不正确;ACBD,四边形ABCD的面积S=SABD+SBCD=BDAO+BDCO=BD(AO+CO)=ACBD故结论正确;所以正确的有:;故答案
11、为:10如图,在四边形ABCD中,AB=AD,BAD=BCD=90,连接AC若AC=6,则四边形ABCD的面积为18【考点】KD:全等三角形的判定与性质【分析】作辅助线;证明ABMADN,得到AM=AN,ABM与ADN的面积相等;求出正方形AMCN的面积即可解决问题【解答】解:如图,作AMBC、ANCD,交CD的延长线于点N;BAD=BCD=90四边形AMCN为矩形,MAN=90;BAD=90,BAM=DAN;在ABM与ADN中,ABMADN(AAS),AM=AN(设为);ABM与ADN的面积相等;四边形ABCD的面积=正方形AMCN的面积;由勾股定理得:AC2=AM2+MC2,而AC=6;2
12、2=36,2=18,故答案为:18 11如图,点E,F在AB上,AD=BC,A=B,AE=BF求证:ADFBCE【考点】KB:全等三角形的判定【分析】根据全等三角形的判定即可求证:ADFBCE【解答】解:AE=BF,AE+EF=BF+EF,AF=BE,在ADF与BCE中,ADFBCE(SAS)12已知:ACB和DCE都是等腰直角三角形,ACB=DCE=90,连接AE,BD交于点O,AE与DC交于点M,BD与AC交于点N(1)如图1,求证:AE=BD;(2)如图2,若AC=DC,在不添加任何辅助线的情况下,请直接写出图2中四对全等的直角三角形【考点】KD:全等三角形的判定与性质;KW:等腰直角三
13、角形【分析】(1)根据全等三角形的性质即可求证ACEBCD,从而可知AE=BD;(2)根据条件即可判断图中的全等直角三角形;【解答】解:(1)ACB和DCE都是等腰直角三角形,ACB=DCE=90,AC=BC,DC=EC,ACB+ACD=DCE+ACD,BCD=ACE,在ACE与BCD中,ACEBCD(SAS),AE=BD,(2)AC=DC,AC=CD=EC=CB,ACBDCE(SAS);由(1)可知:AEC=BDC,EAC=DBCDOM=90,AEC=CAE=CBD,EMCBCN(ASA),CM=CN,DM=AN,AONDOM(AAS),DE=AB,AO=DO,AOBDOE(HL)13如图,
14、等腰三角形ABC中,BD,CE分别是两腰上的中线(1)求证:BD=CE;(2)设BD与CE相交于点O,点M,N分别为线段BO和CO的中点,当ABC的重心到顶点A的距离与底边长相等时,判断四边形DEMN的形状,无需说明理由【考点】KD:全等三角形的判定与性质;K5:三角形的重心;KH:等腰三角形的性质【分析】(1)根据已知条件得到AD=AE,根据全等三角形的性质即可得到结论;(2)根据三角形中位线的性质得到EDBC,ED=BC,MNBC,MN=BC,等量代换得到EDMN,ED=MN,推出四边形EDNM是平行四边形,由(1)知BD=CE,求得DM=EN,得到四边形EDNM是矩形,根据全等三角形的性
15、质得到OB=OC,由三角形的重心的性质得到O到BC的距离=BC,根据直角三角形的判定得到BDCE,于是得到结论【解答】(1)解:由题意得,AB=AC,BD,CE分别是两腰上的中线,AD=AC,AE=AB,AD=AE,在ABD和ACE中,ABDACE(ASA)BD=CE;(2)四边形DEMN是正方形,证明:E、D分别是AB、AC的中点,AE=AB,AD=AC,ED是ABC的中位线,EDBC,ED=BC,点M、N分别为线段BO和CO中点,OM=BM,ON=CN,MN是OBC的中位线,MNBC,MN=BC,EDMN,ED=MN,四边形EDNM是平行四边形,由(1)知BD=CE,又OE=ON,OD=O
16、M,OM=BM,ON=CN,DM=EN,四边形EDNM是矩形,在BDC与CEB中,BDCCEB,BCE=CBD,OB=OC,ABC的重心到顶点A的距离与底边长相等,O到BC的距离=BC,BDCE,四边形DEMN是正方形14如图,ABC中,ACB=90,AC=BC,点E是AC上一点,连接BE(1)如图1,若AB=4,BE=5,求AE的长;(2)如图2,点D是线段BE延长线上一点,过点A作AFBD于点F,连接CD、CF,当AF=DF时,求证:DC=BC【考点】KD:全等三角形的判定与性质;KQ:勾股定理【分析】(1)根据等腰直角三角形的性质得到AC=BC=AB=4,根据勾股定理得到CE=3,于是得
17、到结论;(2)根据等腰直角三角形的性质得到CAB=45,由于AFB=ACB=90,推出A,F,C,B四点共圆,根据圆周角定理得到CFB=CAB=45,求得DFC=AFC=135,根据全等三角形的性质即可得到结论【解答】解:(1)ACB=90,AC=BC,AC=BC=AB=4,BE=5,CE=3,AE=43=1;(2)ACB=90,AC=BC,CAB=45,AFBD,AFB=ACB=90,A,F,C,B四点共圆,CFB=CAB=45,DFC=AFC=135,在ACF与DCF中,ACFDCF,CD=AC,AC=BC,AC=BC15如图,已知AB=CD,AEBD,CFBD,垂足分别为E,F,BF=D
18、E,求证:ABCD【考点】KD:全等三角形的判定与性质【分析】根据全等三角形的判定与性质,可得B=D,根据平行线的判定,可得答案【解答】证明:AEBD,CFBD,AEB=CFD=90,BF=DE,BF+EF=DE+EF,BE=DF在RtAFB和RtCFD中,RtAFBRtCFD(HL),B=D,ABCD16如图,已知等腰三角形ABC中,AB=AC,点D、E分别在边AB、AC上,且AD=AE,连接BE、CD,交于点F(1)判断ABE与ACD的数量关系,并说明理由;(2)求证:过点A、F的直线垂直平分线段BC【考点】KH:等腰三角形的性质;KG:线段垂直平分线的性质【分析】(1)证得ABEACD后
19、利用全等三角形的对应角相等即可证得结论;(2)利用垂直平分线段的性质即可证得结论【解答】解:(1)ABE=ACD;在ABE和ACD中,ABEACD,ABE=ACD;(2)AB=AC,ABC=ACB,由(1)可知ABE=ACD,FBC=FCB,FB=FC,AB=AC,点A、F均在线段BC的垂直平分线上,即直线AF垂直平分线段BC17阅读:能够成为直角三角形三条边长的三个正整数a,b,c,称为勾股数世界上第一次给出勾股数通解公式的是我国古代数学著作九章算术,其勾股数组公式为:其中mn0,m,n是互质的奇数应用:当n=1时,求有一边长为5的直角三角形的另外两条边长【考点】KT:勾股数;KQ:勾股定理
20、【分析】由n=1,得到a=(m21),b=m,c=(m2+1),根据直角三角形有一边长为5,列方程即可得到结论【解答】解:当n=1,a=(m21),b=m,c=(m2+1),直角三角形有一边长为5,、当a=5时,(m21)=5,解得:m=(舍去),、当b=5时,即m=5,代入得,a=12,c=13,、当c=5时,(m2+1)=5,解得:m=3,m0,m=3,代入得,a=4,b=3,综上所述,直角三角形的另外两条边长分别为12,13或3,418已知ABC,AB=AC,D为直线BC上一点,E为直线AC上一点,AD=AE,设BAD=,CDE=(1)如图,若点D在线段BC上,点E在线段AC上如果ABC
21、=60,ADE=70,那么=20,=10,求,之间的关系式(2)是否存在不同于以上中的,之间的关系式?若存在,求出这个关系式(求出一个即可);若不存在,说明理由【考点】KY:三角形综合题【分析】(1)先利用等腰三角形的性质求出DAE,进而求出BAD,即可得出结论;利用等腰三角形的性质和三角形的内角和即可得出结论;(2)当点E在CA的延长线上,点D在线段BC上,同(1)的方法即可得出结论;当点E在CA的延长线上,点D在CB的延长线上,同(1)的方法即可得出结论【解答】解:(1)AB=AC,ABC=60,BAC=60,AD=AE,ADE=70,DAE=1802ADE=40,=BAD=6040=20,ADC=BAD+ABD=60+20=80,=CDE=ADCADE=10,故答案为:20,10;设ABC=x,AED=y,ACB=x,AED=y,在DEC中,y=+x,在ABD中,+x=y+=+x+,=2;Zxxk(2)当点E在CA的延长线上,点D在线段BC上,如图1设ABC=x,ADE=y,ACB=x,AED=y,在ABD中,x+=y,在DEC中,x+y+=180,=2180,当点E在CA的延长线上,点D在CB的延长线上,如图2,同的方法可得=1802