中考数学新定义题型

专题专题4747中考数学转化思想中考数学转化思想1.转化思想的含义所谓转化思想是指一种研究对象在一定条件下转化为另一种研究对象的思维方式。转化思想是数学思想方法的核心,其它数学思想方法都是转化的手段或策略。初中数学中诸如化繁为简、化难为易、化未知为已知等均是转化思想的具体体现2.转化思想的表现形式:

中考数学新定义题型Tag内容描述:

1、 一、选择题一、选择题 1.(2019岳阳)岳阳)对于一个函数,自变量 x 取 a 时,函数值 y 也等于 a,我们称 a 为这个函数的不动点如 果二次函数 y=x2+2x+c 有两个相异的不动点 x1、x2,且 x11x2,则 c 的取值范围是() Ac3 Bc2 C 1 4 c Dc1 【答案】【答案】B 【解析】【解析】 当y=x时, x=x2+2x+c, 即为x2+x+c=0, 由题意可。

2、题型十三题型十三 数学思想数学思想 类型类型 1 1 方程思想方程思想 1. 如图所示,四边形 ABCD 是边长为 1 的正方形,E为 BC边的中点,沿 AP 折叠使 D点落在 AE上的点 H处,连接 PH并延长交 BC于点 F,则 EF的长为() A. B. C. D. 第 1 题图 第 2 题图 第 3 题图 第 4 题图 2. 如图,在平面直角坐标系中,已知直线 y=kx(。

3、专题一新定义与阅读理解题类型一 定义新的运算(2019龙岩长汀一模)对于任意不相等的两个数a,b,定义一种运算“”如下:ab,如32,那么63 【分析】根据“”的运算方法列出算式,再根据算术平方根的定义解答【自主解答】定义新运算问题的实质是一种规定,规定某种运算方式,然后要求按照规定去计算、求值,解决此类问题的方法技巧是:(1)明白这是一种特殊运算符号,常用,&,等来表示一种运算;(2)正确理解新定义运算的含义,严格按照计算顺序把它转化为一般的四则运算,然后进行计算;(3)新定义的算式中,有括号的要先算括号里面的1我们规。

4、专题七阅读理解新定义题类型一 几何新定义题型(2017宁波)有两个内角分别是它们对角的一半的四边形叫做半对角四边形(1)如图1,在半对角四边形ABCD中,BD,CA,求B与C的度数之和;(2)如图2,锐角ABC内接于O,若边AB上存在一点D,使得BDBO,OBA的平分线交OA于点E,连结DE并延长交AC于点F,AFE2EAF.求证:四边形DBCF是半对角四边形;(3)如图3,在(2)的条件下,过点D作DGOB于点H,交BC于点G,当DHBG时,求BGH与ABC的面积之比【分析】(1)根据题意得出BD,CA,代入ABCD360求出即可;(2)求出BEDBEO,根据全等得出BDEBOE,连结OC,设EAF,则AFE2EAF。

5、专题八阅读理解(新定义)问题1.(2019济宁)已知有理数a1,我们把称为a的差倒数,如:2的差倒数是1,1的差倒数是,如果a12,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数,依此类推,那么a1a2a100的值是()A.7.5B.7.5C.5.5D.5.52.(2019随州)“分母有理化”是我们常用的一种化简的方法,如:74,除此之外,我们也可以用平方之后再开方的方式来化简一些有特点的无理数,如:对于,设x,易知,故x0,由x2()23322,解得x,即,根据以上方法,化简后的结果为()A.53 B.5C.5 D.533.(2019荆州)对非负实数x“四舍五入”到个位的值记。

6、2020中考数学 函数的定义及其图象专题练习(含答案)典例探究例1: 一列快车从甲地驶往乙地,一列特快车从乙地驶往甲地,快车的速度为100千米/小时,特快车的速度为150千米/小时,甲乙两地之间的距离为1000千米,两车同时出发,则图中折线大致表示两车之间的距离y(千米)与快车行驶时间t(小时)之间的函数图象是( )A B C D例2: 2018年“中国好声音”全国巡演重庆站在奥体中心举行童童从家出发前往观看,先匀速步行至轻轨车站,等了一会儿,童童搭乘轻轨至奥体中心观看演出,演出结束后,童童搭乘邻居刘叔叔的车顺利到家其中x表示童童。

7、第28讲 定义、命题、定理与证明,相关概念 1. 判断一件事情_叫做命题每个命题都由_和_两部分组成;命题分为_命题和_命题 2. 判断一个命题是假命题的常用方法是_ 3. 公认的真命题称为_;其他真命题的正确性都要通过_的方法证实,推理的过程称为_,经过证明的真命题称为_ 4. 任何一个命题都有_命题,但一个定理_有逆定理,正确或错误的句子,题设,结论,真,假,举反例,公理,推理,证明,定理,逆,不一定,下列命题中真命题是( ) A. ( )2一定成立 B. 位似图形不可能全等 C. 正多边形都是轴对称图形 D. 圆锥的主视图一定是等边三角形,真假命题的判断,(2。

8、题型二新定义阅读理解题1. (2019重庆江北区模拟)材料:解形如(xa)4(xb)4c的一元四次方程时,可以先求常数a和b的均值,然后设yx,再把原方程换元求解用这种方法可以成功地消去含未知数的奇次项,使方程转化成易于求解的双二次方程,这种方法叫做“均值换元法”例:解方程:(x2)4(x3)41解:2和3的均值为,设yx,原方程可化为(y)4(y)41.去括号得(y2y)2(y2y)21.y4y22y3y2yy4y22y3y2y1.整理得2y43y20.(成功地消去了未知数的奇次项)解得y2或y2(舍去)y,即x.x3或x2.(1)用阅读材料中这种方法解关于x的方程(x3)4(x5)41130时,先求两个常数的均值为_。

9、第二部分专题三1在平面直角坐标系中,点P的坐标为(m,n),则向量可以用点P的坐标表示为(m,n)已知(x1,y1),(x2,y2),若x1x2y1y20,则与互相垂直下面四组向量:(3,9),(1,);(2,0),(21,1);(cos30,tan45),(sin30,tan45);(2,),(2,)其中互相垂直的有(A)A1组B2组 C3组 D4组2阅读理解:a,b,c,d是实数,我们把符号称为22阶行列式,并且规定:adbc.例如:3(2)2(1)624,二元一次方程组的解可以利用22阶行列式表示为其中D,Dx,Dy.问题:用上面的方法解二元一次方程组时,下面说法错误的是(C)AD7BDx14CDy27D方程组的解为3阅读理解。

10、第二部分专题一题型一1(2019天水)已知ab,则代数式2a2b3的值是(B)A2B2C4D32已知(xy2)20,则x2y2_4_.3如图,在ABC中,A40,D是ABC和ACB平分线的交点,则BDC_110_.第3题图4如图,A,B,C两两不相交,且半径都是1,则图中三个扇形(即阴影部分)的面积之和为_.第4题图5已知方程a(2xa)x(1x)的两个实数根为x1,x2,设S.(1)当a2时,求S的值;(2)当a取什么整数时,S的值为1;(3)是否存在负数a,使S2的值不小于25?若存在,请求出a的取值范围;若不存在,请说明理由解:(1)当a2时,原方程化为x25x40,解得x14,x21,S213.(2)S,S2x1x22,a(2xa)x(1x)。

11、第二部分专题一题型二1一元二次方程x22x30的解是x11,x23.现给出另一个方程(2x3)22(2x3)30,它的解是(D)Ax11,x23Bx11,x23Cx11,x23Dx11,x232如图,点E在正方形ABCD的对角线AC上,且EC2AE,RtFEG的两直角边EF,EG分别交BC,DC于点M,N.若正方形ABCD的边长为a,则重叠部分四边形EMCN的面积为(D)第2题图Aa2Ba2Ca2Da23已知ab0,且0,则_.第4题图4如图是一个三级台阶,它的每一级的长、宽、高分别为55,10和6,A和B是这个台阶的两个相对端点,A点有一只蚂蚁想到B点去吃可口的食物,则它所走的最短路线是_73_.5已知ABC的三边长分别为a,b,c,。

12、第二部分专题一题型三1(2019厦门一中模拟)在等腰三角形ABC中,A80,则B的度数为_20或50或80_.2(2019菏泽)如图,直线yx3交x轴于点A,交y轴于点B,点P是x轴上一动点,以点P为圆心,1个单位长度为半径作P.当P与直线AB相切时,点P的坐标是_(,0)或(,0)_.第2题图3(2019绍兴)如图,在直线AP上方有一个正方形ABCD,PAD30,以点B为圆心,AB长为半径作弧,与AP交于点A,M,分别以点A,M为圆心,AM长为半径作弧,两弧交于点E,连接ED,则ADE的度数为_15或45_.第3题图4(2019凉山)在ABCD中,E是AD上一点,且点E将AD分为23的两部分,连接BE,与AC相交。

13、第二部分专题一题型四1已知一次函数ykxb的图象与正比例函数y2x的图象相交于点B(m,2),则关于x的不等式kxb2x的解集为(B)第1题图Ax12在平面直角坐标系中,A(2,0),以点A为圆心,1为半径作A.若P(x,y)是A上任意一点,则的最大值为(D)A1BCD3(2019甘肃)如图是二次函数yax2bxc的图象,对于下列说法:ac0,2ab0,4acb2,abc0,当x0时,y随x的增大而减小,其中正确的是(C)ABCD第3题图4在RtABC中,BAC90,AB3,AC4,P为边BC上一动点,PEAB于点E,PFAC于点F.若M为EF的中点,则AM的最小值为_.第4题图5(2019重庆B卷)一天,小明从家出发匀速步行去学校。

14、新定义和阅读理解型问题一、单选题1已知三角形的三边长分别为 a、b、c,求其面积问题,中外数学家曾经进行过深入研究,古希腊的几何学家海伦(Heron,约公元 50年)给出求其面积的海伦公式 S=,其中 p= ;我国南宋时期数学家秦九韶(约 1202-1261)曾提出利用三角形的三边求其面积的秦九韶公式 S= ,若一个三角形的三边长分别为 2,3,4,则其面积是( )A B C D2在每个小正方形的边长为 1的网格图形中,每个小正方形的顶点称为格点从一个格点移动到与之相距 的另一个格点的运动称为一次跳马变换例如,在 44的正方形网格5图形中(如图 1)。

15、“新定义”代数与几何综合应用类型一 新定义函数的综合题1.对于关于 x 的一次函数 y=kx+b(k0) ,我们称函数 ym= ,()kxb为它的 m 分函数(其中 m 为常数)例如,y=3x+2 的 4 分函数为:当 x4时,y 4=3x+2;当 x4 时,y 4=-3x-2(1)如果 y=-x+1 的 2 分函数为 y2,当 x=4 时,y 2= ;当 y2=3 时,x = (2)如果 y=x+1 的-1 分函数为 y-1,求双曲线 y= 与 y-1的图象的交点坐2x标;(3)设 y=-x+2 的 m 分函数为 ym,如果抛物线 y=x2 与 ym的图象有且只有一个公共点,直接写出 m 的取值范围解:(1)y=- x+1 的 2 分函数为:当 x2时,y 2=。

16、新定义阅读理解题1.阅读下列材料,解答下列问题:材料一:一个三位以上的自然数,如果该自然数的末三位表示的数与末三位之前的数字表示的数之差是 11 的倍数,我们称满足此特征的数叫“网红数”.如:65362 ,362-65=297=1127 ,称 65362 是“ 网红数”.材料二:对任意的自然数 p 均可分解为p=100x+10y+z(x0,0y9,0z9 且想,x,y ,z 均为整数),如:5278=52100+107+8,规定:G(p)= . x12)(1)求证:任意两个“网红数” 之和一定能被 11 整除;(2)已知:s=300+10b+a,t=1000 b+100a+1142(1a7,0b5,且a、b 均为整数),当 s+t 为“。

17、专题 5 新定义问题例题精讲例 1.割圆术是我国古代数学家刘徽创造的一种求周长和面积的方法:随着圆内接正多边形边数的增加,它的周长和面积越来越接近圆周长和圆面积,“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”刘徽就是大胆地应用了以直代曲、无限趋近的思想方法求出了圆周率请你也用这个方法求出二次函数 y= 的图象与两坐标轴所围成的图形最接近的面积是( )14(x-4)2A. 5 B. C. 4 D. 174225【答案】 A 【解析】【解答】解:如图,设抛物线与坐标轴的交点为 A、B,则有:A(4 ,0 ),B(0,4);作直线 。

18、一、选择题1、(2018 北京昌平区初一第一学期期末 ) 用“”定义一种新运算:对于任意有理数 a 和 b,规定 ab = ab 2 + a.如:13=13 2+1=10. 则 (-2)3 的值为A10 B-15 C. -16 D-20 答案:D二、填空题3、 (2018 北京西城区七年级第一学期期末附加题)1用“”定义新运算:对于任意有理数a,b,当 ab 时,都有 ;当 ab 时,都有 那么, 26 = 2ab2ab, = 2()3答案:24,-64 (2018 北京海淀区第二学期练习)定义:圆中有公共端点的两条弦组成的折线称为圆的一条折弦阿基米德折弦定理:如图 1, 和 组成圆的折弦, , 是弧 的中ABCABCMAB点, 。

19、新定义和阅读一、单选题1已知二次函数 y=x 2+x+6 及一次函数 y=x+m,将该二次函数在 x 轴上方的图象沿 x 轴翻折到 x 轴下方,图象的其余部分不变,得到一个新函数(如图所示) ,请你在图中画出这个新图象,当直线 y=x+m 与新图象有 4 个交点时,m 的取值范围是( )A m3 B m2 C2m3 D6m2【答案】D2如图,一段抛物线 y=x 2+4(2x2)为 C1,与 x 轴交于 A0,A 1两点,顶点为 D1;将 C1绕点 A1旋转 180得到 C2,顶点为 D2;C 1与 C2组成一个新的图象,垂直于 y 轴的直线 l 与新图象交于点 P1(x 1,y 1) ,P 2(x 2,y 2) ,与线段 D1D2交。

20、专题专题 47 47 中考数学转化思想中考数学转化思想 1. 转化思想的含义 所谓转化思想是指一种研究对象在一定条件下转化为另一种研究对象的思维方式。转化思想是数学思 想方法的核心,其它数学思想方法都是转化的手段或策略。初中数学中诸如化繁为简、化难为易、化未知 为已知等均是转化思想的具体体现 2.转化思想的表现形式: (1)把新问题转化为原来研究过的问题。如有理数减法转化为加法,除法转化为乘法等。

【中考数学新定义题型】相关PPT文档
【中考数学新定义题型】相关DOC文档
标签 > 中考数学新定义题型[编号:64908]