整式的乘除培优讲义

第1页共6页2018年八年级数学上册期末专题复习整式乘除与因式分解一、选择题1.已知10 x=3,10y=4,则102x+3y=()A574B575C576整式乘除一、A级(8分)计算1(1分)(1)(1分)(2)(1分)(3)(1分)(4)(1分)(5)(1分)(6)(1分)(7)(1第1页(共1

整式的乘除培优讲义Tag内容描述:

1、教师姓名 学生姓名 年 级 初一 上课时间 学 科 数学 课题名称 整式的乘法 知识模块知识模块: :单项式与单项式相乘单项式与单项式相乘 1、单项式与单项式相乘的乘法法则:单项式与单项式相乘,把它们的系数、同底数幂分别相乘的积作 为积的因式,其余字母连同它的指数不变,也作为积的因式,再合并同类项; 注意:注意: (1)积的系数等于各因式系数的积; (2)相同字母相乘是同底数幂的乘法,按照“底数不变,指数相加”计算; (3)只在一个单项式里含有的字母,要连同它的指数写在积里,要注意不要丢掉这个因式; (4)单项式乘以单项。

2、 尚孔教育个性化辅导教案 尚孔教育个性化辅导 教学设计方案 尚孔教育培养孩子终生学习力 第1页 教师姓名 学生姓名 年 级 初一 上课时间 学 科 数学 课题名称 整式的乘法 知识模块知识模块: :单项式与单项式相乘单项式与单项式相乘 1、单项式与单项式相乘的乘法法则:单项式与单项式相乘,把它们的系数、同底数幂分别相乘的积作 为积的因式,其余字母连同它的指数不变,也作为积的因式,再合并同类项; 注意:注意: (1)积的系数等于各因式系数的积; (2)相同字母相乘是同底数幂的乘法,按照“底数不变,指数相加”计算; (3)只在一个。

3、教师姓名 学生姓名 年 级 初一 上课时间 学 科 数学 课题名称 整式的除法 知识模块:知识模块:单项式除以单项式单项式除以单项式 1、单项式除以单项式的运算法则 单项式除以单项式,把系数、同底数幂分别相除,作为商式的因式,对于只在被除式里含有的字母, 则连同它的指数作为商的一个因式. 2、两个单项式相除可分为三个步骤 (1)把系数相除,所得的结果作为商的系数; (2)把同底数的幂分别相除,以所得的结果作为商的因式; 整式的除法 (3)只在被除式里含有的字母,连同其指数作为商的一个因式. 这里显然指的是被除式能被除式整。

4、教师姓名 学生姓名 年 级 初一 上课时间 学 科 数学 课题名称 整式的除法 知识模块:知识模块:单项式除以单项式单项式除以单项式 1、单项式除以单项式的运算法则 单项式除以单项式,把系数、同底数幂分别相除,作为商式的因式,对于只在被除式里含有的字母, 则连同它的指数作为商的一个因式. 2、两个单项式相除可分为三个步骤 (1)把系数相除,所得的结果作为商的系数; (2)把同底数的幂分别相除,以所得的结果作为商的因式; 整式的除法 (3)只在被除式里含有的字母,连同其指数作为商的一个因式. 这里显然指的是被除式能被除式整。

5、教师姓名 学生姓名 年 级 初一 上课时间 学 科 数学 课题名称 整式单元复习 知识模块:知识模块:整式的概念整式的概念 整式单元复习 1、字母表示数: 2、代数式:定义:定义:用运算符号运算符号和括号括号把数或表示数的字母连结而成的式子。 注意:注意: “” 、 “= =” 、“ ” 、“ ” 、“” 、“” 都不是运算符号都不是运算符号 3、整式: 知识模块:整式的加减知识模块:整式的加减 1、同类项:所含的字母相同字母相同,且相同字母的指数指数也相同相同的单项式单项式叫同类项。 合并同类项法则:字母和字母的指数不变,把同类。

6、教师姓名 学生姓名 年 级 初一 上课时间 学 科 数学 课题名称 整式单元复习 知识模块:知识模块:整式的概念整式的概念 整式单元复习 1、字母表示数: 2、代数式:定义:定义:用运算符号运算符号和括号括号把数或表示数的字母连结而成的式子。 注意:注意: “” 、 “= =” 、“ ” 、“ ” 、“” 、“” 都不是运算符号都不是运算符号 3、整式: 知识模块:整式的加减知识模块:整式的加减 1、同类项:所含的字母相同字母相同,且相同字母的指数指数也相同相同的单项式单项式叫同类项。 合并同类项法则:字母和字母的指数不变,把同类。

7、 1 第第 1 课时课时 整式的概念整式的概念 课时目标课时目标 1能够能够根据题意,用规范的格式根据题意,用规范的格式正确列代数式;正确列代数式; 2. 掌握代数式的值的概念,能用具体数值代替代数式中字母,求出代数式的值;掌握代数式的值的概念,能用具体数值代替代数式中字母,求出代数式的值; 3. 能用能用代数式代数式表示有规律的数列,体验表示有规律的数列,体验特殊与一般的关系特殊与一般的关系; 4. 理解单项式、多项式和整式的定义,并能分辨出它们的不同理解单项式、多项式和整式的定义,并能分辨出它们的不同; 5. 掌握掌。

8、1 第第 1 课时课时 整式的概念整式的概念 课时目标课时目标 1能够能够根据题意,用规范的格式根据题意,用规范的格式正确列代数式;正确列代数式; 2. 掌握代数式的值的概念,能用具体数值代替代数式中字母,求出代数式的值;掌握代数式的值的概念,能用具体数值代替代数式中字母,求出代数式的值; 3. 能用能用代数式代数式表示有规律的数列,体验表示有规律的数列,体验特殊与一般的关系特殊与一般的关系; 4. 理解单项式、多项式和整式的定义,并能分辨出它们的不同理解单项式、多项式和整式的定义,并能分辨出它们的不同; 5. 掌握掌。

9、 1 第第 2 课时课时 整式的运算整式的运算 课时目标课时目标 1.理解同类项的概念;能判断同类项,且能熟练的合并同类项理解同类项的概念;能判断同类项,且能熟练的合并同类项. 2.掌握去括号,添括号的法则,能准确的进行去括号,添括号掌握去括号,添括号的法则,能准确的进行去括号,添括号. 3.掌握整式的加减运算掌握整式的加减运算,注意要把每一个整式用括号括起来注意要把每一个整式用括号括起来. 4.掌握同底数幂的乘法法则,知道法则适用于三个或三个以上的同底数幂相乘掌握同底数幂的乘法法则,知道法则适用于三个或三个以上的同底。

10、1 第第 2 课时课时 整式的运算整式的运算 课时目标课时目标 1.理解同类项的概念;能判断同类项,且能熟练的合并同类项理解同类项的概念;能判断同类项,且能熟练的合并同类项. 2.掌握去括号,添括号的法则,能准确的进行去括号,添括号掌握去括号,添括号的法则,能准确的进行去括号,添括号. 3.掌握整式的加减运算掌握整式的加减运算,注意要把每一个整式用括号括起来注意要把每一个整式用括号括起来. 4.掌握同底数幂的乘法法则,知道法则适用于三个或三个以上的同底数幂相乘掌握同底数幂的乘法法则,知道法则适用于三个或三个以上的同底。

11、 1 整式整式经典例题经典例题 精解名题精解名题 例例 1 2 |2|3| (4)0xyz,则8. yz xx代数式 例例 2 证明: 233223 (876)(541)(323)xxxxxxxxx 的值与x无关. 解:原式=10 例例 3 已知 53 4yaxbxcx,当3,5xy ,当3x 时,求y的值. 解:y=13 例例 4 计算 22014+(2)2015所得的结果 22014 . 例例 5 已知 55 2a , 44 3b , 33 4c , 则a、b、c、 的大小关系为 a” “”或“=” ) 39. 观察下列单项式:0,3x2,8x3,15x4,24x5,按此规律写出第 13 个单项式是 13 168x . 40. 观察数列 1,1,2,3,5,8,x,21,y,则 2xy= 8 . 41. 小凡在计算时。

12、 1 第第 5 课时课时 整式整式复复习习 教学目标教学目标 使学生牢固掌握本章的知识要点:基本概念、单项式的系数与次数、多项式的项 数与次数、多项式的升(降)幂排列、合并同类项法则、去(添)括号、整式的 加减,乘法公式项式的混合运算 教学难点教学难点 1基本概念、去括号与合并同类项. 2整式的加减运算及乘法公式 考点及考试要求考点及考试要求 1代数式的意义及列代数式; 2单项式; 3多项式及整式的有关概念; 4整式的加减运算; 知识精要知识精要 一、基本概念一、基本概念 1代数式代数式 用基本的运算符号(指加、减、乘、除、乘。

13、 1 第第 5 课时课时 整式整式复习复习 教学目标教学目标 使学生牢固掌握本章的知识要点:基本概念、单项式的系数与次数、多项式的项 数与次数、多项式的升(降)幂排列、合并同类项法则、去(添)括号、整式的 加减,乘法公式项式的混合运算 教学难点教学难点 1基本概念、去括号与合并同类项. 2整式的加减运算及乘法公式 考点及考试要求考点及考试要求 1代数式的意义及列代数式; 2单项式; 3多项式及整式的有关概念; 4整式的加减运算; 知识精要知识精要 一、基本概念一、基本概念 1代数式代数式 用基本的运算符号(指加、减、乘、除、乘。

14、 1 整式整式经典例题经典例题 精解名题精解名题 例例 1 2 |2|3| (4)0xyz,则 . yz xx代数式 例例 2 证明: 233223 (876)(541)(323)xxxxxxxxx 的值与x无关. 例例 3 已知 53 4yaxbxcx,当3,5xy ,当3x 时,求y的值. 例例 4 计算 22015+(2)2014所得的结果 . 例例 5 已知 55 2a , 44 3b , 33 4c , 则a、b、c、的大小关系为 . 例例 6 若23,24, mn 则 2 2 m n = . 例例 7 将多项式 2 41x 加上一个单项式后,使它能成为另一个整式的完全平方,你 添加的这个单项式可以是 . 例例 8 如果 x2kx9 是一个完全平方公式的结果,则常数k . 例例 9(1)。

15、 第 1 页(共 11 页) 第第 14 章整式乘除与因式分解章整式乘除与因式分解 能力训练能力训练 一选择题一选择题 1若 x2(a+1)x+36(x+6)2,则 a 值为( ) A13 B11 或 13 C11 或13 D11 2下列各式从左到右的变形,因式分解正确的是( ) Ax24+4x(x+2) (x2)+4x Bx216(x4)2 Cx2x6(x3) (x+2) D24xy3x8y 。

16、整式乘除 一、A级 (8分)计算 1 (1分) (1) (1分) (2) (1分) (3) (1分) (4) (1分) (5) (1分) (6) (1分) (7) (1分) (8) (4分)计算下列式子: 2 (1分) (1) (1分) (2) (1分) (3) (1分) (4)(2分) 已知 ,求 的值 3 (4分) 回答下列各题: 4 (1分) 若 , ,则 (1) (1分) 若 , ,则 (2) (1分) 若 , ,则 (3) (1分) 若 ,则 (4) (2分) 若 ,求 的值 5 (2分) 若 , ,试用含 、 的代数式表示 6 (2分) 已知 , , , , ,则 、 、 、 、 的大小关系是 什么? 7(2分) 计算: 8 (2分) 计算: 9 (。

17、第 1 页 共 6 页2018 年 八年级数学上册 期末专题复习 整式乘除与因式分解一、选择题1.已知 10 x=3,10 y=4,则 102x+3y =( )A574 B575 C576 D5772.如果(a nbmb)3=a9b15,那么( )Am=4,n=3 Bm=4,n=4 Cm=3,n=4 Dm=3,n=33.已知 x+y=4,xy=2,则 x2+y2的值( )A10 B11 C12 D134.下列各式计算正确的是( )A(b+2a)(2ab)=b 24a 2 B2a 3+a3=3a6 C a3a=a4 D(a 2b)3=a6b35.若x、y是有理数,设N=3x 2+2y218x+8y+35,则N( )A一定是负数 B一定不是负数C.一定是正数 DN的取值与x、y的取值有关6.下列各式:(x-2y)(2y+x);(x-2y)(-x-2y);(-x-2y)(x+。

18、 学科教师辅导讲义学员编号: 年 级:七年级 课 时 数:3学员姓名:辅导科目:数学学科教师:授课主题第01讲-整式的乘除授课类型T同步课堂P实战演练S归纳总结教学目标 掌握幂的有关运算性质(同底数幂的乘除、积的乘方与幂的乘方) 掌握整式的乘除运算法则,会利用其性质进行化简求值。授课日期及时段T(Textbook-Based)同步课堂体系搭建一、知识框架二、知识概念(一)同底数幂的乘法1、同底数幂的乘法的运算性质:同底数幂相乘。

19、 学科教师辅导讲义学员编号: 年 级:七年级 课 时 数:3学员姓名:辅导科目:数学学科教师:授课主题第01讲-整式的乘除授课类型T同步课堂P实战演练S归纳总结教学目标 掌握幂的有关运算性质(同底数幂的乘除、积的乘方与幂的乘方) 掌握整式的乘除运算法则,会利用其性质进行化简求值。授课日期及时段T(Textbook-Based)同步课堂体系搭建一、知识框架二、知识概念(一)同底数幂的乘法1、同底数幂的乘法的运算性质:同底数幂相乘。

20、 学科教师辅导讲义学员编号: 年 级:七年级 课 时 数:3学员姓名:辅导科目:数学学科教师:授课主题第01讲-整式的乘除授课类型T同步课堂P实战演练S归纳总结教学目标 掌握幂的有关运算性质(同底数幂的乘除、积的乘方与幂的乘方) 掌握整式的乘除运算法则,会利用其性质进行化简求值。授课日期及时段T(Textbook-Based)同步课堂体系搭建一、知识框架二、知识概念(一)同底数幂的乘法1、同底数幂的乘法的运算性质:同底数幂相乘。

【整式的乘除培优讲义】相关DOC文档
【整式的乘除培优讲义】相关PDF文档
标签 > 整式的乘除培优讲义[编号:29892]