4.4 反证法,路边苦李,王戎7岁时,与小伙伴们外出游玩,看到路边的李树上结满了果子.小伙伴们纷纷去摘取果子,只有王戎站在原地不动,王戎回答说:“树在道边而多子,此必苦李.” 小伙伴摘取一个尝了一下果然是苦李.,王戎是怎样知道李子是苦的呢?他运用了怎样的推理方法?,小故事:,假设李子不是苦的,即李子
浙教版八年级数学下册5.1 矩形1课件Tag内容描述:
1、4.4 反证法,路边苦李,王戎7岁时,与小伙伴们外出游玩,看到路边的李树上结满了果子.小伙伴们纷纷去摘取果子,只有王戎站在原地不动,王戎回答说:“树在道边而多子,此必苦李.” 小伙伴摘取一个尝了一下果然是苦李.,王戎是怎样知道李子是苦的呢?他运用了怎样的推理方法?,小故事:,假设李子不是苦的,即李子是甜的, 那么这长在人来人往的大路边的李子会不会被过路人摘去解渴呢?,那么,树上的李子还会这么多吗?,这与事实矛盾吗?说明李子是甜的这个假设是错的还是对的?,所以,李子是苦的学.科.网zxxk.组卷网,思考:,王戎的推理方法是:假设李子不。
2、矩 形,有一个角是直角的平行四边形叫做矩形(通常也叫长方形).,矩形,即:,矩形是特殊的平行四边边形。它具有平行四边形 的一切性质。即,对边平行且相等.,对角相等,邻角互补.,对角线互相平分.,矩形的一般性质,边:,角:,对角线:,从边、角、对角线三个方面进行考虑,你能发现矩形有什么特有的性质吗?请以小组的形式讨论总结。,A,D,C,B,矩形的邻边垂直,A,B,C,D,矩形的四个角都是直角,已知:四边形ABCD是矩形 求证:A=B=C=D=90,证明:矩形ABCDABCDB+C=180 C=90 B=90A=B=C=D=90,定理证明1,已知:四边形ABCD是矩形 求证:AC= BD,证明: 矩形A。
3、,1.2 二次根式的性质(1),合作学习:,已知下列各正方形的面积,求其边长.学.科.网zxxk.组卷网,你能猜想,= ;,= ;,试一试:,3,= ;,31,一般地,二次根式有下面的性质:学.科.网zxxk.,2.3,5,3,口答:,请比较左右两边的式子, 议一议: 与 有什么关系?,3,3,5,5,0,0,填空:,大家抢答,比一比:,比较分析 和,先开方,后平方,先平方,后开方,a0,a取全体实数,a,a学.科.网,根号a的平方,根号下a平方,讲解例题,练一练:,计算:,练一练:,数 在数轴上的位置如图,则,0,1,讲解例题,练习,练一练:,1、判断题,A,3.实数a、b、c在数轴上的位置如图所示,化简,练一练:,。
4、1.3二次根式的运算(1),二次根式的性质:,(a0),(1),(2),a,-a,当a0时,= ;当a0时,= 。,|a|,a,二次根式的性质:,(3),(4),(a 0 , b0),(a 0 , b0),二次根式有下面运算的性质,(a 0 , b0),(a 0 , b0),你能用二次根式上面运算的性质来计算吗?,例1:计算,注意: 不能写成,例2: 一个正三角形路标如图。 若它的边长为 个单位, 求这个路标的面积。,A,B,C,D,如图,架在消防车上的云梯AB长为15m, AD:BD=1 :0.6,云梯底 部离地面的距离BC为2m。 你能求出云梯的顶端离地 面的距离AE吗?,引申与提高:,A,D,E,B,C,小结,二次。
5、5.2 菱形 (第一课时),矩形,有一个角是直角的平行四边形叫做矩形。,矩形是一个特殊的平行四边形,那么 还有其它的特殊的平行四边形吗?,激趣定标,学习目标,1、理解并掌握菱形的定义及性质;2、能够运用菱形性质解决具体问题。,一组邻边相等的平行四边形叫做菱形.,自学互动 适时点拨,感受,生活,“法兰西巡逻兵”飞行表演队称得上是世界最著名、同时也是世界最古老的飞行特技小组之一,他们的飞行秉承法国文化中固有的优雅风范,编排巧妙,它的飞行表演也并不在意是否雷霆万钧气势迫人,而是专注于芭蕾般的优美与法国击剑一样的敏捷和灵活。,。
6、-高 斯,生活是数学的源泉, 探索是数学的生命线!,特殊的平行四边形-5.2菱形(1),凤桥镇中学 许起琴 (15年3月),合作学习,你有几种拼法呢?,拼法一:将一腰重合,拼法二:将底重合,菱形定义,菱形就在我们身边,菱形就在我们身边,菱形就在我们身边,菱形就在我们身边,合作探究,从菱形定义的描述你知道菱形具有怎样的性质吗?你准备从哪些方面展开研究?,菱形是特殊的平行四边形,它具有平行四边形的所有性质,对边平行,四条边都相等,对角线互相垂直平分,且 每条对角线平分一组对角,菱形性质,菱形还具有哪些特殊的性质呢?,对称性-中心对称图形;,既。
7、5.2 菱形(2),(1)菱形的定义是什么?,(2)菱形有哪些性质?,(3)判定一个四边形是不是菱形可根据什么?,(4)菱形还有其他判定方法吗?,回 顾,定义法,一组邻边相等的平行四边形叫做菱形,1.具有平行四边形的一切性质。,2.菱形本身具有的特殊性质:四条边相等, 两条对角线互相垂直平分, 每一条对角线平分一组对角.,课前热身:,1.(1)已知菱形ABCD的边长为4, DAB=60,则对角线AC=_,BD=_,面积S菱形ABCD=_.,(2)已知菱形ABCD的两条对角线长分别为2cm, cm,则菱形ABCD的边长为_cm.,2.已知点E为菱形ABCD的一条对角线AC上的任意一点,连结BE并延长交。
8、19.3.1 矩形,第19章 四边形,导入新课,讲授新课,当堂练习,课堂小结,第1课时 矩形的性质,学习目标,1.理解矩形的概念,知道矩形与平行四边形的区别与联系.(重点) 2.会证明矩形的性质,会用矩形的性质解决简单的问题.(重点、难点) 3.掌握直角三角形斜边中线的性质,并会简单的运用. (重点),观察下面图形,长方形在生活中无处不在.,导入新课,情景引入,思考 长方形跟我们前面学习的平行四边形有什么关系?,你还能举出其他的例子吗?,讲授新课,活动1:利用一个活动的平行四边形教具演示,使平行四边形的一个内角变化,请同学们注意观察.,矩形,。
9、,导入新课,讲授新课,当堂练习,课堂小结,22.4 矩形,第二十二章 四边形,第1课时 矩形的性质,学习目标,1.理解矩形的概念,知道矩形与平行四边形的区别与联系.(重点) 2.会证明矩形的性质,会用矩形的性质解决简单的问题.(重点、难点) 3.掌握直角三角形斜边中线的性质,并会简单的运用. (重点),观察下面图形,长方形在生活中无处不在.,导入新课,情景引入,思考 长方形跟我们前面学习的平行四边形有什么关系?,你还能举出其他的例子吗?,讲授新课,活动1:利用一个活动的平行四边形教具演示,使平行四边形的一个内角变化,请同学们注意观察.,矩。
10、课前准备,同学们,课本、练习本、笔,你准备好了吗?,第5章 特殊平行四边形 5.1 矩形(1),合作学习,用6根火柴棒首尾相接摆成一个平行四边形(如图).,(1)能摆成多少个不同的平行四边形? 它们有什么共同特点?说出你的理由.,(2)在这些平行四边形中,有没有面积最大的一个平 行四边形?说出你的理由.,(3)这个面积最大的平行四边形的内角有什么特点?,a,有一个角是直角的平行四边形叫做矩形.,()矩形的定义:,()实质上:矩形是特殊的平行四边形.,()矩形的表示:矩形ABCD.,一个角是直角,想一想: 你能举出在人们的日常生活和生产。
11、第2章 四边形,2.5 矩形,2.5.1 矩形的性质,目标突破,总结反思,第2章 四边形,知识目标,2.5 矩形,知识目标,1经过操作、观察、讨论,理解矩形的定义、对称性及其与平行四边形的联系 2类比探索平行四边形的边、角、对角线性质的方法探索出矩形的性质,能利用这些性质进行计算或证明,目标突破,目标一 能正确认识矩形及矩形的对称性,例1 教材补充例题 下面对矩形的叙述错误的是( ) A矩形是中心对称图形,对称中心是对角线的交点 B矩形是轴对称图形,它有四条对称轴 C矩形是特殊的平行四边形 D推动一个平行四边形的活动框架,当有一个角变成直角时。
12、第2章 四边形,2.5 矩形,2.5.2 矩形的判定,目标突破,总结反思,第2章 四边形,知识目标,2.5 矩形,知识目标,1类比平行四边形的判定定理,从角、对角线的角度去探索矩形的判定定理 2理解矩形的判定定理,能综合应用矩形的判定与性质定理解决简单的计算与证明问题,目标突破,目标一 能利用矩形的判定定理证明、说理,2.5 矩形,例1 如图253,已知四边形ABCD是平行四边形,下列条件:ACBD;ABAD;12;ABBC.其中能说明ABCD是矩形的是_(填序号),图253,2.5 矩形,解析 根据矩形的判定定理,在已知图形是平行四边形的条件下,再添加一个角是直角或对角线。
13、有没有五边形?,你知道为什么吗?,你能从这幅图中找出哪些平面图形?,有你熟悉的图形吗?,5.1多边形(1),重要的数学思维方法,三角形,由不在同一条直线上的三条线段首尾顺次相接所形成的图形叫三角形 。,三角形的概念:,四边形,四边形概念:,由不在同一条直线上的四条线段首尾顺次相接所形成的图形叫做四边形 。,在同一平面里,,凸四边形,凹四边形,四边形的各条边都在任意一条边所在直线的同一侧,四边形的各条边不都在任意一条边所在直线的同一侧,温馨提示:我们现在所学的是凸边形。,温故而知新,边,内角,顶点,外角,A,B,D,C,边,内角(角)。
14、5.1多边形(2),四边形的内角和是多少度?怎样得到的?,四边形的外角和是多少度?,四边形的内角和是360度,通过画对角线把四边形问题化归为三角形问题来解决。,四边形的外角和是360度,温故知新,我们知道 边数为3的多边形叫三角形,边数为4的多边形叫四边形.学.科.网zxxk.组卷网,请你欣赏,六角螺帽,依此类推,边数为5的多边形叫五边形,边数为n的多边形叫n边形.(n为大于或等于3的正整数),多边形的定义:,在同一平面内,由不在同一条直线上的一些线段首尾顺次相接所组成的(封闭)图形。,对角线:,连结多边形不相邻的两个顶点的线段,叫做多边形。
15、5.1,多 边 形,数学(浙)八年级下册 第五章 平行四边形,(3),新知识,正三角形,正方形,正六边形,正五边形,正七边形,正八边形,正多边形,:各边相等、各内角也相等的多边形.学.科.网zxxk.组卷网,做一做,正六边形,正五边形,正七边形,正八边形, 求正五边形、正六边形、正七边形的各个内角度数, 正五边形、正七边形、正七八边形都是轴对称图形吗?各有几条对称轴?, 由于正多边形有许多优良的性质,匀称美观,常被人们用于图案设计和镶嵌平面.学.科.网zxxk.,用一些形状、大小完全相同的一种或几种平面图形进行拼接,彼此之间不留空隙,不重叠地。
16、5.1 多 边 形(1),由这些图片你抽象出什么几何图形?,大家说说怎样的图形是四边形?,四边形定义:在同一平面内,不在同一条直线上的四条线段首尾顺次相接形成的图形。,凸四边形,凹四边形,温馨提示:我们现在所学的是凸多边形,即多边形的各边都在任意一条边所在直线的同一侧。,合作学习,在一张纸上任意画一个四边形,剪下它的四个角, 把它们拼在一起(四个角的顶点重合).你发现了什么? 其他同学与你的发现相同吗?,一般地,四边形有以下的定理:四边形的内角和等于3600.学.科.网zxxk.组卷网,你能把你的发现概括成一个命题吗?,已知:四边形ABCD。
17、5.1 矩形(2)A 练就好基础 基础达标1如图所示,平行四边形 ABCD 的对角线 AC 与 BD 相交于点 O,要使它成为矩形,需再添加的条件是( D )AAOOC BBD 平分ABCCACBD DACBD2在平行四边形 ABCD 中,增加一个条件能使它成为矩形,则增加的条件是( D )A对角线互相平分 BABBCCAB AC DAC180 123已知 ABCD,AC,BD 是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是( C )ABACDCA B BACDACCBACABD DBAC ADB4已知四边形 ABCD 是平行四边形,对角线 AC 与 BD 相交于点 O,那么下列结论中正确的是( C )A当 ABBC 时,四边形 ABCD 是矩形B。
18、第 5 章 特殊平行四边形5.1 矩形(1)A 练就好基础 基础达标1矩形具有而一般平行四边形不具有的性质是( A )A对角线相等 B对角相等C对边相等 D对角线互相平分2如图所示,矩形的两条对角线的一个交角为 60,两条对角线的长度的和为 24 cm,则这个矩形的一条较短边为( C )A12 cm B8 cm C 6 cm D5 cm3若矩形的对角线长为 4 cm,一条边长为 2 cm,则此矩形的面积为( B )A8 cm2 B4 cm23 3C2 cm2 D8 cm 234如图所示,在矩形 ABCD 中,对角线 AC,BD 交于点 O,下列说法错误的是( C )AABDC BACBDCACBD DOAOC第 4 题图第 5 题图5如图所示,EF 过矩形 。
19、5.1 矩形(2),回顾:矩形有哪些性质?,(2)ABC=BCD=ADC=BAD=90O,(3) OA=OB=OC=OD (矩形的对角线相等且互相平分),木工师傅 (1)测量两组对边,发现两组对边分别相等; (2)将直角尺靠紧窗框的一个角,测得这是直角. 由此说明这个窗框是矩形 你知道这是为什么吗?,有一个角是直角的平行四边形叫做矩形,你知道吗?,矩形定义判定:,2、要判定一个四边形是矩形只要说明几个角是直角?为什么?,A,B,C,D,矩形的判定定理1:有三个角是直角的四边形是矩形.,几何语言:,A=B=C=90, 四边形ABCD是矩形,1、命题“矩形的四个角都是直角”的逆命题是什么?,合作。
20、5.1矩形(1),八年级数学下册,Q1:六根火柴棒所围成的平行四边形的形状是 唯一的吗?,Q2:你能拼出面积最大的平行四边形吗? 这时它的面积是多少?,它们有什么共同特点?,其实我还是平行四边形啊!只是我比较特殊而已,大家发现了我的特殊之处吗?,A DB C,矩形:,木门,纸张,电脑显示器,有一个角是直角的平行四边形。,实质上:矩形是特殊的平行四边形。,特殊,思考:有一个角是直角的四边形是矩形吗?,矩形的性质的研究,我们已经知道矩形是特殊的平行四边形,因此矩形除具有平行四边形的性质外,还有它的特殊性质.你能说出矩形有哪些性质吗?,E 。,五、。