,导入新课,讲授新课,当堂练习,课堂小结,22.1 平行四边形的性质,第二十二章 四边形,第2课时 平行四边形的性质定理2,1.掌握平行四边形对角线互相平分的性质;(重点) 2.经历对平行四边形性质的猜想与证明的过程,渗透转化思想, 体会图形性质探究的一般思路.(难点),导入新课,分享蛋糕的故事,视
冀教版八年级数学下册22.4第2课时矩形的判定课件Tag内容描述:
1、,导入新课,讲授新课,当堂练习,课堂小结,22.1 平行四边形的性质,第二十二章 四边形,第2课时 平行四边形的性质定理2,1.掌握平行四边形对角线互相平分的性质;(重点) 2.经历对平行四边形性质的猜想与证明的过程,渗透转化思想, 体会图形性质探究的一般思路.(难点),导入新课,分享蛋糕的故事,视频中的小朋友所说的那块蛋糕是最大的吗?为什么?,讲授新课,我们知道平行四边形的边角这两个基本要素的性质,那么平行四边形的对角线又具有怎样的性质呢?,如图,在ABCD中,连接AC,BD,并设它们相交于点O.,OA与OC,OB与OD有什么关系?,猜一猜,OA=OC,O。
2、,导入新课,讲授新课,当堂练习,课堂小结,21.1 一次函数,第二十一章 一次函数,第1课时 正比例函数,情境引入,1.理解正比例函数的概念; 2.会求正比例函数的解析式,能利用正比例函数解决简单的实际问题.(重点、难点),导入新课,情景引入,如果设蛤蟆的数量为x,y分别表示蛤蟆嘴的数量,眼睛的数量,腿的数量,扑通声,你能列出相应的函数表达式吗?,y=x,y=2x,y=4x,y=x,讲授新课,问题1 下列问题中,变量之间的对应关系是函数关系吗?如果是,请写出函数表达式: (1)圆的周长l 随半径r的变化而变化 (2)铁的密度为7.8g/cm3,铁块的质量m(单。
3、,导入新课,讲授新课,当堂练习,课堂小结,19.4 坐标与图形的变化,第十九章 平面直角坐标系,第1课时 图形的平移与坐标变化,1掌握点平移得到新坐标的规律,并且熟练画出图形 2理解“数形结合”;体会坐标系中图形平移的实际应用,学习目标,导入新课,观察与思考,问题:你会下象棋吗?如果下一步想“马走日”“象走田”应该走到哪里呢?你知道吗?,讲授新课,你还记得什么叫平移吗?,图形平移的性质是什么?,在平面内,把一个图形沿某个方向移动一定的距离,这种图形的变换叫做平移.,1.新图形与原图形形状和大小不变,但位置改变;,2.对应点的连线平。
4、,导入新课,讲授新课,当堂练习,课堂小结,19.4 坐标与图形的变化,第十九章 平面直角坐标系,第2课时 图形的轴对称、放缩与坐标变化,学习目标,1.在同一直角坐标系内,感受坐标变化而使图形对称、扩大和缩小的过程,并能得出图形对称、扩大和缩小的规律.(重点、难点) 2.通过探索图形上点的坐标变化与图形变换之间的关系,进一步体会数形结合的数学思想.,沿着某一直线对折,直线两旁的部分能够完全重合的图形就是轴对称图形;这条直线称为对称轴.,a称为点P的横坐标, b称为点P的纵坐标.,导入新课,复习引入,a,b,ABC与A1B1C1关于x轴对称,讲授新课。
5、,导入新课,讲授新课,当堂练习,课堂小结,21.1 一次函数,第二十一章 一次函数,第2课时 一次函数,情境引入,1.理解一次函数的概念,明确一次函数与正比例函数之间的联系; 2.能利用一次函数解决简单的实际问题.(重点、难点),导入新课,问题引入,某登山队大本营所在地的气温为5,海拔每升高1km气温下降6.登山队员由大本营向上登高x km时,他们所在位置的气温是y.,y=5-6x,(1)试用函数表达式表示y与x的关系;,(2)它是正比例函数吗?为什么?,y=5-6x不是正比例函数,正比例函数没有常数项.,讲授新课,问题1 下列问题中,变量之间的对应关系是函数。
6、,导入新课,讲授新课,当堂练习,课堂小结,20.2 函数,第二十章 函数,情境引入,1.了解函数的相关概念,会判断两个变量是否具有函数关系(重点) 2.会根据函数表达式求函数值.,导入新课,视频引入,讲授新课,想一想,如果你坐在摩天轮上,随着时间的变化,你离开地面的高度是如何变化的?,情景一,下图反映了摩天轮上的一点的高度h (m)与旋转时间t(min) 之间的关系.,(1)根据左图填表:,(2)对于给定的时间t ,相应的高度h能确定吗?,11,37,45,37,3,10,瓶子或罐头盒等圆柱形的物体,常常如下图那样 堆放.随着层数的增加,物体的总数是如何变化的?,。
7、,导入新课,讲授新课,当堂练习,课堂小结,21.2 一次函数的图像与性质,第二十一章 一次函数,第2课时 一次函数的性质,学习目标,1.掌握一次函数的性质(重点) 2.能灵活运用一次函数的图象与性质解答有关问题(难点),导入新课,复习引入,1.一次函数图象有什么特点?,2.作出一次函数图象需要描出几个点?,只需要描出2个点.,一次函数y=kx+b的图象是一条直线,直线上所有点的坐标都满足表达式y=kx+b.,一般选直线与两坐标轴的两交点,即(0,b)和( ,0).,画一画1:在同一坐标系中作出下列函数的图象.,(1),(2),(3),-3,O,-2,2,3,1,2,3,-1,-1,-2,x。
8、9.4 矩形菱形正方形第 4 课时菱形的判定练习一、选择题1下列说法正确的是( )A对角线互相垂直的四边形是菱形B矩形的对角线互相垂直C一组对边平行的四边形是平行四边形D四边相等的四边形是菱形2如图 K191,将 ABC 沿 BC 方向平移得到 DCE,连接 AD,则下列条件能够判定四边形 ABCD 为菱形的是( )A AB BC B AC BCC B60 D ACB60图 K191图 K1923如图 K192,在 ABC 中,点 E, D, F 分别在边 AB, BC, CA 上,且DE CA, DF BA.下列四个结论中,不正确的是( )A四边形 AEDF 是平行四边形B如果 BAC90,那么四边形 AEDF 是矩形C如果 AD 平分 BAC,。
9、,导入新课,讲授新课,当堂练习,课堂小结,22.5 菱形,第二十二章 四边形,第1课时 菱形的性质,1.了解菱形的概念及其与平行四边形的关系. 2.探索并证明菱形的性质定理.(重点) 3.应用菱形的性质定理解决相关计算或证明问题.(难点),导入新课,情景引入,欣赏下面图片,图片中框出的图形是你熟悉的吗?,欣赏视频,前面的图片中出现的图形是平行四边形,和视频中菱形一致,那么什么是菱形呢?这节课让我们一起来学习吧.,矩形,前面我们学习了平行四边形和矩形,知道了矩形是由平行四边形角的变化得到,如果平行四边形有一个角是直角时,就成为了矩。
10、19.3.1 矩形,第19章 四边形,导入新课,讲授新课,当堂练习,课堂小结,第1课时 矩形的性质,学习目标,1.理解矩形的概念,知道矩形与平行四边形的区别与联系.(重点) 2.会证明矩形的性质,会用矩形的性质解决简单的问题.(重点、难点) 3.掌握直角三角形斜边中线的性质,并会简单的运用. (重点),观察下面图形,长方形在生活中无处不在.,导入新课,情景引入,思考 长方形跟我们前面学习的平行四边形有什么关系?,你还能举出其他的例子吗?,讲授新课,活动1:利用一个活动的平行四边形教具演示,使平行四边形的一个内角变化,请同学们注意观察.,矩形,。
11、,导入新课,讲授新课,当堂练习,课堂小结,18.2 抽样调查,第十八章 数据的收集与整理,第2课时 样本的代表性,学习目标,1.明确抽样调查的优点和局限性,样本的选取必须具有代表性.(重点) 2.会设计恰当的抽样调查方案.(难点),导入新课,1936年,美国文学文摘杂志根据电话簿上的地址和俱乐部成员名单上的地址发出1000万封信所收的调查意见,断言兰登将以370:161的优势在总统选举中击败罗斯福.但结果恰好相反,罗斯福当选了.文学文摘大丢面子,原因何在呢?,情境引入,情境1:1949年,美国某杂志报道:1924年从耶鲁大学毕业的学生目前的年收入一。
12、,导入新课,讲授新课,当堂练习,课堂小结,20.2 函数,第二十章 函数,情境引入,1.能根据简单的实际问题写出函数表达式,并确定自变量的取值范围(重点、难点),做一做:请用含自变量的式子表示下列问题中的函数关系:(1)汽车以60 km/h 的速度匀速行驶,行驶的时间为 t(单位:h),行驶的路程为 s(单位:km);(2)多边形的边数为 n,内角和的度数为 y,问题(1)中,t 取-2 有实际意义吗? 问题(2)中,n 取2 有意义吗?,导入新课,复习引入,问题:上节课时的三个问题中,要使函数有意义,自变量能取哪些值?,自变量t的取值范围:_,t0,情景。
13、,导入新课,讲授新课,当堂练习,课堂小结,第2课时 平行四边形的判定定理3,2.2.2 平行四边形的性质,第2章 四边形,1.利用两组对边分别相等判定平行四边形;(重点),3.判定定理的相关运用.(难点),学习目标,2.利用对角线互相平分判定平行四边形;(重点),问题1 除了两组对边分别平行,平行四边形还有哪些性质?,平行四边形的对角相等.,平行四边形的对角线互相平分.,思考 我们得到的这些逆命题是否都成立?这节课我们一起探讨一下吧.,问题2 上面的两条条性质的逆命题各是什么?,两组对角分别相等的四边形是平行四边形;,对角线互相平分的四边形。
14、19.3.2 菱形,第19章 四边形,导入新课,讲授新课,当堂练习,课堂小结,第1课时 菱形的判定,1.经历菱形判定定理的探究过程,掌握菱形的判定定理(重点)2.会用这些菱形的判定方法进行有关的证明和计算. (难点),一组邻边相等,有一组邻边相等的平行四边形叫做菱形,菱形的性质,菱形,两组对边平行,四条边相等,两组对角分别相等,邻角互补,两条对角线互相垂直平分 每一条对角线平分一组对角,边,角,对角线,复习引入,导入新课,问题 矩形的定义是什么?性质有哪些?,根据菱形的定义,可得菱形的第一个判定的方法:,AB=AD,,四边形ABCD是平行四边形,,四。
15、第2课时 矩形的判定 新课导入 工人师傅在做门窗或矩形工人师傅在做门窗或矩形 零件时,要确保图形是矩形。零件时,要确保图形是矩形。 你有什么办法帮工人师傅测一你有什么办法帮工人师傅测一 测吗?测吗? 学习目标 1. 1.能推导归纳判定一个四边形是矩形的几能推导归纳判定一个四边形是矩形的几 种方法种方法. . 2. 2.能选取适当的判定方法判定一个四边形能选取适当的。
16、9.4 矩形菱形正方形第 2 课时矩形的判定练习一、选择题1如图 K171,四边形 ABCD 的对角线互相平分,要使它成为矩形,那么需要添加的条件是( )图 K171A AB CD B AD BCC AB BC D AC BD2四边形 ABCD 的对角线 AC, BD 相交于点 O,下列不能判定它是矩形的条件是( )A AO CO, BO DO, AC BDB AB CD, AD BC, BAD90C ABC BCD ADCD AB CD, AB CD, AC BD3平面内一点到两条平行线的距离分别是 1 cm 和 3 cm,则这两条平行线间的距离为( )A1 cm B2 cmC3 cm D2 cm 或 4 cm图 K1724如图 K172,四边形 ABCD 为平行四边形,延长 AD 到点 E,使 DE AD。
17、,导入新课,讲授新课,当堂练习,课堂小结,22.5 菱形,第二十二章 四边形,第2课时 菱形的判定,1.经历菱形判定定理的探究过程,掌握菱形的判定定理(重点)2.会用这些菱形的判定方法进行有关的证明和计算. (难点),一组邻边相等,有一组邻边相等的平行四边形叫做菱形,菱形的性质,菱形,两组对边平行,四条边相等,两组对角分别相等,邻角互补,两条对角线互相垂直平分 每一条对角线平分一组对角,边,角,对角线,复习引入,导入新课,问题 菱形的定义是什么?性质有哪些?,根据菱形的定义,可得菱形的第一个判定的方法:,AB=AD,,四边形ABCD是平行四边形,。
18、19.3.1 矩形,第19章 四边形,导入新课,讲授新课,当堂练习,课堂小结,第2课时 矩形的判定,学习目标,1.经历矩形判定定理的猜想与证明过程,理解并掌握矩形的判定定理(重点) 2.能应用矩形的判定解决简单的证明题和计算题.(难点),复习引入,导入新课,问题1 矩形的定义是什么?,有一个角是直角的平行四边形叫做矩形.,问题2 矩形有哪些性质?,矩形,边:,角:,对角线:,对边平行且相等,四个角都是直角,对角线互相平分且相等,思考 工人师傅在做门窗或矩形零件时,如何确保图形是矩形呢?现在师傅带了两种工具(卷尺和量角器),他说用这两种工具的。
19、,导入新课,讲授新课,当堂练习,课堂小结,22.4 矩形,第二十二章 四边形,第1课时 矩形的性质,学习目标,1.理解矩形的概念,知道矩形与平行四边形的区别与联系.(重点) 2.会证明矩形的性质,会用矩形的性质解决简单的问题.(重点、难点) 3.掌握直角三角形斜边中线的性质,并会简单的运用. (重点),观察下面图形,长方形在生活中无处不在.,导入新课,情景引入,思考 长方形跟我们前面学习的平行四边形有什么关系?,你还能举出其他的例子吗?,讲授新课,活动1:利用一个活动的平行四边形教具演示,使平行四边形的一个内角变化,请同学们注意观察.,矩。
20、,导入新课,讲授新课,当堂练习,课堂小结,22.4 矩形,第二十二章 四边形,第2课时 矩形的判定,学习目标,1.经历矩形判定定理的猜想与证明过程,理解并掌握矩形的判定定理(重点) 2.能应用矩形的判定解决简单的证明题和计算题.(难点),复习引入,导入新课,问题1 矩形的定义是什么?,有一个角是直角的平行四边形叫做矩形.,问题2 矩形有哪些性质?,矩形,边:,角:,对角线:,对边平行且相等,四个角都是直角,对角线互相平分且相等,思考 工人师傅在做门窗或矩形零件时,如何确保图形是矩形呢?现在师傅带了两种工具(卷尺和量角器),他说用这两种工具。