1课时作业(十三)2.2.2 第 1 课时 利用边的关系判定平行四边形 一、选择题1下列条件中不能判定四边形 ABCD 是平行四边形的是( )AABCD,ABCD BABCD,ADBCCABCD,ADBC DABCD,ADBC2在四边形 ABCD 中,ADBC,要判定四边形 ABCD 是平行四边形,
湘教版八年级数学下册2.5.2矩形的判定课时作业含答案Tag内容描述:
1、1课时作业(十三)2.2.2 第 1 课时 利用边的关系判定平行四边形 一、选择题1下列条件中不能判定四边形 ABCD 是平行四边形的是( )AABCD,ABCD BABCD,ADBCCABCD,ADBC DABCD,ADBC2在四边形 ABCD 中,ADBC,要判定四边形 ABCD 是平行四边形,还应满足( )AAC180 BBD180CAB180 DAD1803如图 K131,已知在四边形 ABCD 中,ABCD,ABCD,E 为 AB 上一点,过点 E作 EFBC,交 CD 于点 F,G 为 AD 上一点,H 为 BC 上一点,连接 CG,AH.若 GDBH,则图中的平行四边形有 ( )链 接 听 课 例 1归 纳 总 结图 K131A2 个 B3 个 C4 个 D6 个42018安徽在ABCD 。
2、1课时作业(五)1.2 第 3 课时 勾股定理的逆定理 一、选择题1下列四组线段中,能组成直角三角形的是( )Aa1,b2,c2 Ba2,b3,c4Ca2,b4,c5 Da3,b4,c52若ABC 的三边 a,b,c 满足(ac)(a 2b 2c 2)0,则ABC 是( )A等腰三角形 B直角三角形 C等腰三角形或直角三角形 D等腰直角三角形3五根小木棒,其长度分别为 7,15,20,24,25,现将它们摆成两个直角三角形,如图 K51,其中正确的是 ( )图 K514如图 K52,在正方形网格中有一个ABC,若小方格的边长均为 1,则ABC 是 ( )图 K52A直角三角形B锐角三角形 C钝角三角形D以上答案都不正确52018长沙。
3、1课时作业(十六)2.4 三角形的中位线 一、选择题1如图 K161,C,D 分别为 EA,EB 的中点,E30,1110,则2 的度数为( ) 链 接 听 课 例 1归 纳 总 结图 K161A80 B90 C100 D11022018宁波如图 K162,在ABCD 中,对角线 AC 与 BD 相交于点 O,E 是边 CD 的中点,连接 OE.若ABC60,BAC80,则1 的度数为( )图 K162A50 B40C30 D203如图 K163,在ABC 中,ACB90,AC8,AB10.DE 垂直平分 AC 交 AB于点 E,则 DE 的长为( )链 接 听 课 例 2归 纳 总 结图 K163A6 B5C4 D34如图 K164,D,E,F 分别是 AC。
4、9.4 矩形菱形正方形第 4 课时菱形的判定练习一、选择题1下列说法正确的是( )A对角线互相垂直的四边形是菱形B矩形的对角线互相垂直C一组对边平行的四边形是平行四边形D四边相等的四边形是菱形2如图 K191,将 ABC 沿 BC 方向平移得到 DCE,连接 AD,则下列条件能够判定四边形 ABCD 为菱形的是( )A AB BC B AC BCC B60 D ACB60图 K191图 K1923如图 K192,在 ABC 中,点 E, D, F 分别在边 AB, BC, CA 上,且DE CA, DF BA.下列四个结论中,不正确的是( )A四边形 AEDF 是平行四边形B如果 BAC90,那么四边形 AEDF 是矩形C如果 AD 平分 BAC,。
5、1课时作业(三)1.2 第 1 课时 勾股定理 一、选择题12018滨州在直角三角形中,若勾为 3,股为 4,则弦为 ( )A5 B6C7 D82如图 K31,在边长为 1 个单位的小正方形组成的网格中,点 A,B 都是格点,则线段 AB 的长度为( )图 K31A5 B6 C7 D253如图 K32,在ABC 中,C90,AB 的垂直平分线交 AB 于点 D,交 BC 于点E,连接 AE.若 CE5,AC12,则 BE 的长是( )图 K32A5 B10 C12 D134如图 K33,长方形 OABC 的边 OA 的长为 3,边 AB 的长为 2,OA 在数轴上,以原点 O 为圆心,对角线 OB 的长为半径画弧,交数轴正半轴于一点,则这个点表示的实数是( )。
6、1课时作业(二十九)4.2 一次函数 一、选择题1下列函数的表达式中是一次函数的是( )链 接 听 课 例 2归 纳 总 结Ay By x6 8x 15Cy2x 21 Dy2 1x2下列关于 x 的函数中,是正比例函数的是( )Ayx 2 By 2xCy Dyx2 x 123下列说法中,不正确的是( )A一次函数不一定是正比例函数B正比例函数是一次函数的特例C不是正比例函数就不是一次函数D不是一次函数就不是正比例函数4函数 y(2a)xb1 是关于 x 的正比例函数的条件是 ( )链 接 听 课 例 2归 纳 总 结Aa2 Bb1 Ca2 且 b1 Da,b 可取任意实数52018玉林等腰三角形底角与顶角之间的函数关系是( )A正比例。
7、1课时作业(二十七)4.1.1 变量与函数 一、选择题1小邢到单位附近的加油站加油,图 K271 是小邢所用的加油机上的数据显示牌,则数据中的变量是( ) 链 接 听 课 例 1归 纳 总 结图 K271A金额 B数量C单价 D金额和数量2函数 y 中,自变量 x 的取值范围是( )x 1x 2Ax1 Bx1Cx1 且 x2 Dx23声音在空气中传播的速度与气温的关系如下表,根据表格分析下列说法错误的是( )气温 T/ 20 10 0 10 20 30声速 v/(m/s) 318 324 330 336 342 348A.在这个变化过程中,气温是自变量,声速是因变量 B声速随气温的升高而增大 C声速 v 与气温 T 的关系式为 vT330 D。
8、1课时作业(三十八)5.2 频数直方图 一、选择题1图 K381 是八年级(1)班 45名同学每周课外阅读时间的频数直方图(每组含前一个边界值,不含后一个边界值)由图可知,人数最多的一组是 ( )链 接 听 课 例 2归 纳 总 结图 K381A24 小时 B46 小时C68 小时 D810 小时22018江西某班组织了针对全班同学关于“你最喜欢的一项体育活动”的问卷调查后,绘制出如图 K382 所示的频数直方图,由图可知,下列结论正确的是( )图 K382A最喜欢篮球的人数最多B最喜欢羽毛球的人数是最喜欢喜欢乒乓球人数的两倍C全班共有 50名学生D最喜欢田径的人数占总人数的 10%。
9、4.1.2 函数的表示法 一、选择题1一司机驾驶汽车从甲地赶往乙地,他以 80 千米/时的速度匀速行驶 4 小时到达乙地,当他按原路匀速返回时,汽车的速度 v(千米/时)与时间 t(时)之间的函数表达式是( )链 接 听 课 例 1归 纳 总 结Av320t Bv 320tCv20t Dv20t22018长沙小明家、食堂、图书馆在同一条直线上,小明从家去食堂吃早餐,接着去图书馆读报,然后回家图 K281 反映了这个过程中,小明离家的距离 y 与时间 x 的对应关系,根据图象,下列说法正确的是 ( )链 接 听 课 例 2归 纳 总 结图 K281A小明吃早餐用了 25 minB小明读报用了 30 minC食。
10、菱形的判定【基础练习】知识点 1 四条边都相等的四边形是菱形1如图 13,以点 O为圆心,一定长为半径画弧,与 OM,ON 分别交于点 A,B,再分别以点A,B 为圆心,以 OA长为半径画弧,两弧交于点 C,分别连接 AC,BC,则四边形 OACB一定是( )图 13A平行四边形 B菱形 C矩形 D不能确定2如图 14,已知ABC 中,ABAC,将ABC 沿边 BC翻折,得到的DBC 与原ABC 拼成四边形 ABDC,则能直接判定四边形 ABDC是菱形的依据是( )图 14A一组邻边相等的平行四边形是菱形B四条边都相等的四边形是菱形C对角线互相垂直的平行四边形是菱形D对角线互相垂直平分的四。
11、9.4 矩形菱形正方形第 2 课时矩形的判定练习一、选择题1如图 K171,四边形 ABCD 的对角线互相平分,要使它成为矩形,那么需要添加的条件是( )图 K171A AB CD B AD BCC AB BC D AC BD2四边形 ABCD 的对角线 AC, BD 相交于点 O,下列不能判定它是矩形的条件是( )A AO CO, BO DO, AC BDB AB CD, AD BC, BAD90C ABC BCD ADCD AB CD, AB CD, AC BD3平面内一点到两条平行线的距离分别是 1 cm 和 3 cm,则这两条平行线间的距离为( )A1 cm B2 cmC3 cm D2 cm 或 4 cm图 K1724如图 K172,四边形 ABCD 为平行四边形,延长 AD 到点 E,使 DE AD。
12、1课时作业(十九)2.6.1 菱形的性质 一、选择题12017益阳下列性质中菱形不一定具有的是( )A对角线互相平分 B对角线互相垂直C对角线相等 D既是轴对称图形又是中心对称图形22017衡阳菱形的两条对角线长分别是 12 和 16,则此菱形的边长是( )链 接 听 课 例 2归 纳 总 结A10 B8 C6 D532018宿迁如图 K191,菱形 ABCD 的对角线 AC,BD 相交于点 O,E 为 CD 的中点若菱形 ABCD 的周长为 16,BAD60,则OCE 的面积是 ( )链 接 听 课 例 3归 纳 总 结图 K191A. B2 C2 D43 34如图 K192,在菱形 ABCD 中,M,N 分别是边 BC,CD 上的点,且AMANMNAB,则C。
13、22.4.2 矩形的判定1在 ABCD 中, ABC_, ABCD 是矩形2已知:线段 AB, BC, ABC90.求作:矩形 ABCD.以下是甲、乙两同学的作业:图 15甲:1.以点 C 为圆心, AB 长为半径画弧;2以点 A 为圆心, BC 长为半径画弧;3两弧在 BC 上方交于点 D,连接 AD, CD,四边形 ABCD 即为所求(如图 15)图 16乙:1.连接 AC,作线段 AC 的垂直平分线,交 AC 于点 M;2连接 BM 并延长,在延长线上取一点 D,使 MD MB,连接 AD, CD,四边形 ABCD 即为所求(如图 16)对于两人的作业,下列说法正确的是( )A两人都对 B两人都不对C甲对,乙不对 D甲不对,乙对3如。
14、矩形的性质【基础练习】知识点 1 矩形的定义1在ABCD 中,对角线 AC,BD 交于点 O,增加下列哪个条件,就能判定它是矩形( )AABCADC180 BABBCCAOCO,BODO DABCD知识点 2 矩形的性质2如图 1,在矩形 ABCD 中,对角线 AC,BD 交于点 O,以下说法错误的是( )图 1AABC90 BACBD COAOB DOAAD3. 如图 2 所示,EF 过矩形 ABCD 对角线的交点 O,且分别交 AB,CD 于点 E,F,则阴影部分的面积是矩形 ABCD 面积的( )图 2A. B. C. D.15 14 13 31042017兰州 如图 3,矩形 ABCD 的对角线 AC 与 BD 相交于点 O,ADB30,AB4,则OC 等于( )图 3A5 。
15、1课时作业(二十)2.6.2 菱形的判定 一、选择题1如图 K201,在ABCD 中,AC 平分DAB,AB2,则ABCD 的周长为( )图 K201A4 B6 C8 D122如图 K202,已知ABC,ABAC,将ABC 沿边 BC 折叠,得到DBC,其与原三角形 ABC 拼成四边形 ABDC,则能直接判定四边形 ABDC 是菱形的依据是( )链 接 听 课 例 1归 纳 总 结图 K202A一组邻边相等的平行四边形是菱形 B四条边都相等的四边形是菱形 C对角线互相垂直的平行四边形是菱形 D对角线互相垂直平分的四边形是菱形32017河南如图 K203,在ABCD 中,对角线 AC,BD 相交于点 O,添加下列条件不能判定ABCD 是菱形。
16、1课时作业(十七)2.5.1 矩形的性质 一、选择题1如图 K171,在矩形 ABCD 中,对角线 AC,BD 交于点 O,以下说法错误的是( )图 K171AABC90 BACBDCOAOB DOAAD22017怀化如图 K172,在矩形 ABCD 中,对角线 AC,BD 相交于点O,AOB60,AC6 cm,则 AB 的长是( )链 接 听 课 例 3归 纳 总 结图 K172A3 cm B6 cmC10 cm D12 cm3如图 K173,在矩形 ABCD 中,AB3,AD4,P 是 AD 上的动点,PEAC 于点E,PFBD 于点 F,则 PEPF 的值为( )图 K173A. B. C2 D.153 52 12542017淮安如图 K174,在矩形纸片 ABCD 中,AB3,点 E 在边 BC 上,将ABE 沿直线 AE 折叠。
17、矩形的判定【基础练习】知识点 1 有一个角是直角的平行四边形是矩1如图 14,四边形 ABCD是平行四边形,若利用“有一个角是直角的平行四边形是矩形”判定它是矩形,则需要添加的条件是_(写出一个即可)图 142如图 15,在ABCD 中,DEAB,BFCD,垂足分别为 E,F.求证:(1)ADECBF;(2)四边形 BFDE是矩形图 15知识点 2 有三个角是直角的四边形是矩形3在数学活动课上,老师和同学们要判断一个四边形门框是不是矩形,下面是某合作学习小组的 4名同学拟订的方案,其中正确的是( )A测量对角线是否互相平分 B测量两组对边是否分别相等C测量一组对角是。
18、矩形的判定教学目标:1掌握矩形的判定方法;(重点)2矩形的判定及性质的综合应用(难点)教学过程:一、情境导入我们已经知道,有一个角是直角的平行四边形是矩形这是矩形的定义,我们可以依此判定一个四边形是矩形除此之外,我们能否找到其他的判定矩形的方法呢?矩形是一个中心对称图形,也是一个轴对称图形,具有如下的性质:1两条对角线相等且互相平分;2四个内角都是直角这些性质,对我们寻找判定矩形的方法有什么启示?二、合作探究探究点一:有一角是直角的平行四边形是矩形已知:如图, ABC 中, AB AC, AD 是 BC 边上的高, AE 是 BA。
19、第2章 四边形,2.5 矩形,2.5.2 矩形的判定,目标突破,总结反思,第2章 四边形,知识目标,2.5 矩形,知识目标,1类比平行四边形的判定定理,从角、对角线的角度去探索矩形的判定定理 2理解矩形的判定定理,能综合应用矩形的判定与性质定理解决简单的计算与证明问题,目标突破,目标一 能利用矩形的判定定理证明、说理,2.5 矩形,例1 如图253,已知四边形ABCD是平行四边形,下列条件:ACBD;ABAD;12;ABBC.其中能说明ABCD是矩形的是_(填序号),图253,2.5 矩形,解析 根据矩形的判定定理,在已知图形是平行四边形的条件下,再添加一个角是直角或对角线。
20、1课时作业(十八)2.5.2 矩形的判定 一、选择题1下列四边形中,不一定是矩形的是( )链 接 听 课 例 2归 纳 总 结A四个角都相等的四边形B有三个角是直角的四边形C一组对边平行,且对角线相等的四边形D对角线相等且互相平分的四边形2如图 K181,四边形 ABCD 为平行四边形,延长 AD 到点 E,使 DEAD,连接EB,EC,DB,添加一个条件,不能使四边形 DBCE 成为矩形的是( )图 K181AABBE BDEDC CADB90 DCEDE32017上海在平行四边形 ABCD 中,AC,BD 是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是( )ABACDCA BBACDACCBACABD DBAC。