初中数学人教版八年级上册第 11 章 三角形11.2 与三角形有关的角11.2.1 三角形的内角 第 1 课时 同步练习题测试时间:30 分钟一、选择题1.若一个三角形的三个内角度数的比为 234,则这个三角形是( ) A.锐角三角形 B.直角三角形C.钝角三角形 D.等腰三角形答案 A 三角形三个
湘教版八年级数学下册2.4三角形的中位线同步练习含答案Tag内容描述:
1、初中数学人教版八年级上册第 11 章 三角形11.2 与三角形有关的角11.2.1 三角形的内角 第 1 课时 同步练习题测试时间:30 分钟一、选择题1.若一个三角形的三个内角度数的比为 234,则这个三角形是( ) A.锐角三角形 B.直角三角形C.钝角三角形 D.等腰三角形答案 A 三角形三个内角度数的比为 234,三个内角的度数分别是 180 =40,180 =60,18029 39 =80.该三角形是锐角三角形.故选 A.492.如图,在ABC 中,B+C=100,AD 平分BAC,交 BC 于 D,DEAB,交 AC 于 E,则ADE 的大小是( )A.30 B.40 C.50 D.60答案 B 在ABC 中,B+C=100,BAC+B+C=180。
2、1课时作业(三)1.2 第 1 课时 勾股定理 一、选择题12018滨州在直角三角形中,若勾为 3,股为 4,则弦为 ( )A5 B6C7 D82如图 K31,在边长为 1 个单位的小正方形组成的网格中,点 A,B 都是格点,则线段 AB 的长度为( )图 K31A5 B6 C7 D253如图 K32,在ABC 中,C90,AB 的垂直平分线交 AB 于点 D,交 BC 于点E,连接 AE.若 CE5,AC12,则 BE 的长是( )图 K32A5 B10 C12 D134如图 K33,长方形 OABC 的边 OA 的长为 3,边 AB 的长为 2,OA 在数轴上,以原点 O 为圆心,对角线 OB 的长为半径画弧,交数轴正半轴于一点,则这个点表示的实数是( )。
3、课时作业(二)1.1 第 2 课时 含 30 角的直角三角形的性质及应用 一、选择题1如图 K21,一棵大树在一次强台风中从距离地面 5 米处折断倒下,倒下部分与地面成 30角,则这棵大树在折断前的高度是( )图 K21A10 米 B15 米 C25 米 D30 米2如图 K22,已知在ABC 中,ACB90,B30,D 为斜边 AB 的中点,则图中与线段 AC 的长度相等的线段有( )图 K22A0 条 B1 条 C2 条 D3 条3如图 K23,在ABC 中,ACB90,CD 是 AB 边上的高,A30,AB4,则 BD 的值为( )图 K23A3 B2 C1 D.124已知三角形的三个内角度数之比为 123,若这个三角形的最短边长为 ,则它2的。
4、初中数学人教版八年级上册第 11 章 三角形11.2.2 三角形的外角 同步练习题测试时间:30 分钟一、选择题1.如图,A=30,B=45,C=40,则DFE=( )A.75 B.100 C.115 D.120答案 C BEF 是AEC 的一个外角,BEF=A+C=30+40=70,DFE 是BEF 的一个外角,DFE=B+BEF=45+70=115,故选 C.2.如图,C 在 AB 的延长线上,CEAF 于 E,交 FB 于 D,若F=40,C=20,则FBA 的度数为( )A.50 B.60 C.70 D.80答案 C CEAF 于 E,FED=90,C=20,A=90-C=70,F=40,。
5、初中数学人教版八年级上册第 11 章 三角形11.1 与三角形有关的线段11.1.1 三角形的边 同步练习题测试时间:30 分钟一、选择题1.如图,以 BC 为边的三角形有( )A.3 个 B.4 个 C.5 个 D.6 个答案 B 以 BC 为边的三角形有BCN,BCO,BMC,ABC,故选 B.2.四条线段的长度分别为 4,6,8,10,则可以组成三角形的个数为( )A.4 B.3 C.2 D.1答案 B 选出三条线段的所有组合有 4,6,8;4,6,10;4,8,10;6,8,10,只有 4,6,10 不能组成三角形.故选 B.3.已知等腰三角形的一边长为 3 cm,且它的周长为 12 cm,则它的底边长为( )A.3 cm B.6 cm C.9 cm D.3 cm 或 6 cm答案 A 。
6、课时作业(一)1.1 第 1课时 直角三角形的性质和判定 一、选择题1在 RtABC 中,C90,B54,则A 的度数是 ( )链 接 听 课 例 1归 纳 总 结A66 B56 C46 D362在直角三角形中,若斜边和斜边上的中线的长度之和为 9,则斜边上的中线长为( )A3 B4.5 C6 D93具备下列条件的ABC 中,不是直角三角形的是 ( )链 接 听 课 例 2归 纳 总 结AABCBABCCABC123DAB3C4如图 K11,在ABC 中,ABAC8,BC6,AD 平分BAC 交 BC于点 D,E 为 AC的中点,连接 DE,则CDE 的周长为( )图 K11A10 B11 C12 D135如图 K12,ABCADC90,E 是 AC的中点,则( )图 K12A12B。
7、初中数学人教版八年级上册第 11章 三角形11.1.2 三角形的高、中线与角平分线11.1.3 三角形的稳定性 同步练习题测试时间:30 分钟一、选择题1.一定在三角形内部的线段是( )A.锐角三角形的三条高、三条角平分线、三条中线B.钝角三角形的三条高、三条中线、一条角平分线C.任意三角形的一条中线、两条角平分线、三条高D.直角三角形的三条高、三条角平分线、三条中线答案 A A 项,锐角三角形的三条高、三条角平分线、三条中线一定在三角形内部,故本选项正确;B 项,钝角三角形的三条高有两条在三角形的外部,故本选项错误;C 项,任意三角形的一条中线。
8、1专题训练(一) 直角三角形与勾股定理的应用 类型之一 共边直角三角形的问题1如图 1ZT1,一架梯子的长度为 2.5 米,斜靠在墙上,梯子底部离墙底端 0.7米(1)这个梯子顶端离地面_米;(2)如果梯子的顶端下滑了 0.4 米,那么梯子的底部在水平方向上滑动了几米?图 1ZT12如图 1ZT2,在离水面高度为 5 米的岸上,有人用绳子拉船靠岸,开始时绳子BC 的长为 13 米,此人以每秒 0.5 米的速度收绳,10 秒后船移动到点 D 的位置,则船向岸边移动了多少米?(假设绳子是直的,结果保留根号)图 1ZT22 类型之二 构造直角三角形解决问题3由于过度采伐森林和。
9、 北师大版八年级数学下册 1.2 直角三角形 同步练习一、单选题(共 10 题;共 20 分)1.下列命题的逆命题正确的是( ) A.全等三角形的面积相等 B.全等三角形的周长相等C.等腰三角形的两个底角相等 D.直角都相等2.已知直角三角形 ABC,有一个锐角等于 50,则另一个锐角的度数是 ( ). A. 30 B. 40 C. 45 D. 503.如图,ABC 中, C90 , AC3 , B30,点 P 是 BC 边上的动点,则 AP 长不可能是( ) A.3.5 B.4.2 C.5.8 D.74.在下列条件:A+。
10、含 30角的直角三角形的性质及其应用知识点 1 含 30 角的直角三角形的性质1如图 1117,在ABC 中,C90,A30,AB12,则 BC的长为( )图 1117A6 B6 C6 D122 32在 RtABC 中,C90,A60,则( )AAB2AC BAC2ABCABAC DAB3AC3如图 1118 所示,已知在ABC 中,ACB90,B30,D 为斜边 AB的中点,若 AC5,则 CD的长为( )图 1118A4 B5 C6 D74如图 1119,在ABC 中,C90,AC3,B30,P 是 BC边上的动点,则AP的长可能是( )图 1119A1 B2 。
11、2.6 用尺规作三角形同步检测一、选择题1.下列作图语言规范的是( ) A. 过点 P 作线段 AB 的中垂线 B. 过点 P 作AOB 的平分线C. 在直线 AB 的延长线上取一点 C,使 AB=AC D. 过点 P 作直线 AB 的垂线2.如图,在ABC 中,C=90,CAB=50,按以下步骤作图: 以点 A 为圆心,小于 AC 长为半径画弧,分别交 AB、AC 于点 E、F;分别以点 E、F 为圆心,大于 EF 长为半径画弧,两弧相交于点 G;作射线 AG , 交 BC 边于点 D 则ADC 的度数为( ) A. 40 B. 55 C. 65 D. 753.某探究性学习小组仅利用一副三角板不能完成的操作是( )A. 作已知直线的平。
12、2.5 全等三角形同步检测一、选择题 1.如图,已知 AB=AD,1=2=50,D=100,那么ACB 的度数为( ) A. 30 B. 40 C. 50 D. 602.如图,已知ABC 的六个元素,则下面甲、乙、丙三个三角形中和ABC 全等的图形是( )A. 甲和乙 B. 乙和丙 C. 只有乙 D. 只有丙3.已知ABCDEF,且A=100,E=35,则F=( ) A. 35 B. 45 C. 55 D. 704.如图,点 B、E 在线段 CD 上,若C=D,则添加下列条件,不一定能使ABCEFD 的是( )A. BC=FD,AC=ED B. A=DEF,AC=EDC. AC=ED,AB=EF D. ABC=EFD,BC=FD5.如图,在正方形 ABCD 中,AB=2,延长 BC 到点 E,使 CE=1,连接 DE。
13、直角三角形全等的判定【基础练习】知识点 1 “斜边、直角边”定理1如图 1,AD90,ACDB,则ABCDCB 的依据是( )图 1AHL BASA CAAS DSAS2在下列条件中,不能判定两个直角三角形全等的是( )A两条直角边对应相等B两个锐角对应相等C一个锐角和它所对的直角边对应相等D一条斜边和一条直角边对应相等3如图 2,ACBEDB90,ACED,则下列条件中,不能使ABCEBD 成立的是( )图 2AAE BABBD CBCBD DABECBD4如图 3,已知 ADBC,若直接用“HL”判定 RtABDRtACD,则需添加的一个条件是_图 352017娄底 如图 4,在 RtABC 与 RtDCB 中,已知AD90,请你添加一个条。
14、9.5三角形的中位线练习一、选择题12018泸县模拟 如图 K211,在 ABC中, D, E分别是边 AB, AC的中点,若BC6,则 DE的长为( )A2 B3C4 D6图 K211图 K21222017张家界 如图 K212, D, E分别是 ABC的边 AB, AC的中点如果ADE的周长是 6,则 ABC的周长是( )A6 B12 C18 D243如图 K213, ABC中, D, E分别是 BC, AC的中点, BF平分 ABC,交 DE于点F,若 BC6,则 DF的长是( )A3 B4 C5 D6图 K213图 K2144如图 K214,杨伯伯家小院子里的四棵小树 E, F, G, H刚好在其四边形院子ABCD各边的中点处若在四边形 EFGH内种上小草,则这块草地的形状是(。
15、22.3 三角形的中位线1如图 1,在 ABC 中, D, E 分别是 BC, AC 的中点,则线段 DE 是 ABC 的_, ABC 中共有_条中位线图 1 图 22如图 2 所示,在 ABC 中, AB8, AC10,且 AD4, CE5,则下列线段中是ABC 的中位线的是( )A线段 CD B线段 BE C线段 DE D线段 AE3如图 3, DE 是 ABC 的中位线,则 DE_BC(填位置关系)若 BC8,则DE_图 3 图 44(2017宜昌)如图 4,要测定被池塘隔开的 A, B 两点间的距离,可以在 AB 外选一点 C,连接 AC, BC,并分别找出它们的中点 D, E,连接 ED.现测得 AC30 m, BC40 m, DE24 m,则 A, B 两点间的距离为( 。
16、4.5 三角形的中位线A 练就好基础 基础达标1如图所示,在 ABCD 中,AD 8,点 E,F 分别是 BD,CD 的中点,则 EF 等于( C )A2 B3 C 4 D52. 如图所示,在 ABCD 中,对角线 AC,BD 交于点 O,E 是 CD 中点,连结 OE.若OE3 cm,则 AD 的长为( B )A. 3 cm B. 6 cm C. 9 cm D. 12 cm3如图所示,点 O 是 AC 的中点,将周长为 8 cm 的平行四边形 ABCD 沿对角线 AC 方向平移 AO 个长度得到平行四边形 OBCD,则四边形 OECF 的周长为( C )A8 cm B6 cmC4 cm D2 cm4如图所示,在ABC 中,AB12,AC 10,BC 9, AD 是 BC 边上的高将ABC 按如图所示的方式折。
17、1课时作业(十六)2.4 三角形的中位线 一、选择题1如图 K161,C,D 分别为 EA,EB 的中点,E30,1110,则2 的度数为( ) 链 接 听 课 例 1归 纳 总 结图 K161A80 B90 C100 D11022018宁波如图 K162,在ABCD 中,对角线 AC 与 BD 相交于点 O,E 是边 CD 的中点,连接 OE.若ABC60,BAC80,则1 的度数为( )图 K162A50 B40C30 D203如图 K163,在ABC 中,ACB90,AC8,AB10.DE 垂直平分 AC 交 AB于点 E,则 DE 的长为( )链 接 听 课 例 2归 纳 总 结图 K163A6 B5C4 D34如图 K164,D,E,F 分别是 AC。
18、第2章 四边形,2.4 三角形的中位线,2.4 三角形的中位线,目标突破,总结反思,第2章 四边形,知识目标,2.4 三角形的中位线,知识目标,通过作图,结合数形结合思想,能正确理解三角形中位线的概念及三角形中位线定理,并能利用三角形中位线定理进行计算与证明,目标突破,目标 能利用三角形中位线定理进行计算与证明,图241,2.4 三角形的中位线,2.4 三角形的中位线,2.4 三角形的中位线,【归纳总结】 三角形中位线与三角形中线的异同,2.4 三角形的中位线,例2 教材补充例题 如图242,D是ABC内一点,BDCD,AD12,BD8,CD6,E,F,G,H分别是边AB,AC,C。
19、三角形的中位线教学目标:1了解三角形中位线的定义;2掌握三角形的中位线定理;(重点)3综合运用平行四边形的判定及三角形的中位线定理解决问题(难点)教学过程:一、情境导入如图所示,吴伯伯家有一块等边三角形的空地 ABC,已知点 E, F 分别是边 AB, AC 的中点,量得 EF5 米,他想把四边形 BCFE 用篱笆围成一圈放养小鸡,你能求出需要篱笆的长度吗?二、合作探究探究点:三角形的中位线【类型一】 利用三角形中位线定理求线段的长如图,在 ABC 中, D.E 分别为 AC.BC 的中点, AF 平分 CAB,交 DE 于点 F.若DF3,则 AC 的长为( )A. B3 C6 。
20、三角形的中位线【基础练习】知识点 三角形的中位线1如图 1,在ABC 中,D,E 分别是 AB,AC 的中点若 DE2 cm,则 BC 边的长为( )图 1A. 1 cm B. 2 cm C. 3 cm D. 4 cm2.如图 2,在等边三角形 ABC 中,D,E 分别为边 AB,AC 的中点,则DEC 的度数为( )图 2A30 B60 C120 D15032017宜昌 如图 3,要测定被池塘隔开的 A,B 两点间的距离,可以在 AB 外选一点 C,连接 AC,BC,并分别找出它们的中点 D,E,连接 DE.现测得 AC30 m,BC40 m,DE24 m,则 AB 的长为( )图 3A50 m B48 m C45 m D35 m42018南充 如图 4,在 RtABC 中,ACB90,A30,D,E,。