数列的概念

1数列1.1数列的概念基础过关1.已知数列an的通项公式为ann2n50,则8是该数列的()A.第5项B.第6项C.第7项D.非任何一项解析n2n508,得n7或n6(舍去).答案C2.数列an:,3,3,9,的一个通项公式是()A.an(1)n(nN)B.an(1)1数列11数列的概念一、选择题1

数列的概念Tag内容描述:

1、1数列1.1数列的概念基础过关1.已知数列an的通项公式为ann2n50,则8是该数列的()A.第5项 B.第6项C.第7项 D.非任何一项解析n2n508,得n7或n6(舍去).答案C2.数列an:,3,3,9,的一个通项公式是()A.an(1)n(nN)B.an(1)n(nN)C.an(1)n1(nN)D.an(1)n1(nN)解析把前四项统一形式为,可知它的一个通项公式为an(1)n.答案B3.已知数列1,(1)n,则它的第5项的值为()A. B.C. D.解析易知,数列的通项公式为an(1)n,当n5时,该项为a5(1)5.答案D4.数列1,的通项公式为_;数列2,1,0,的通项公式为_.解析对于数列1,因为1可以写成,故其通项公式为。

2、1数列11数列的概念一、选择题1已知数列an的通项公式为an,nN,则该数列的前4项依次为()A1,0,1,0 B0,1,0,1C.,0,0 D2,0,2,0答案A解析当n分别等于1,2,3,4时,a11,a20,a31,a40.2数列1,3,6,10,的一个通项公式是()Aann2n1 BanCan Dann21答案C解析令n1,2,3,4,代入A,B,C,D检验,即可排除A,B,D,故选C.3数列,的一个通项公式可能是()Aan(1)n Ban(1)nCan(1)n1 Dan(1)n1答案D解析由已知数列,可得数列各项的的分母绝对值为2n,又数列所有的奇数项为正,偶数项为负,故可用(1)n1来控制各项的符号,故数列,的一个通项公式为an(1)n1,故选D。

3、1数列11数列的概念学习目标1.了解数列及其有关概念.2.理解数列的通项公式,并会用通项公式写出数列的任意一项.3.对于比较简单的数列,会根据其前几项写出它的一个通项公式知识点一数列的概念及表示方法1数列与数列的项按照一定次序排列的一列数叫作数列,数列中每一个数叫作这个数列的项数列中的每一项都和它的序号有关,排在第一位的数称为这个数列的第1项(通常也叫作首项),排在第二位的数称为这个数列的第2项,排在第n位的数称为这个数列的第n项2数列的表示方式数列的一般形式可以写成a1,a2,an,简记为数列an,an是数列的第n项,也叫。

4、9.1数列的概念 (一)学习目标1.理解数列及其有关概念;2.理解数列的通项公式,并会用通项公式写出数列的任意一项;3.对于比较简单的数列,会根据其前n项写出它的通项公式知识链接下列4个结论正确的有_(1)任何一个函数都对应着一个映射,任何一个映射也对应着一个函数;(2)任何一个函数都有一个确定的函数表达式;(3)函数的表示方法有:列表法、解析法、图象法;(4) 对于函数f(x),x1,x2为函数f(x)定义域内任意两个值,当x1x2时,f(x1)f(x2),则f(x)是增函数答案(3) 解析函数是非空数集A到非空数集B的一个映射,而映射中的A、B并不一定是数。

5、9.1数列的概念 (二)学习目标1.理解数列的几种表示方法,能从函数的观点研究数列.2.理解递推公式的含义,能根据递推公式求出数列的前几项知识链接1数列中的项与数集中的元素进行对比,数列中的项具有的性质有_答案(1)确定性,(2)可重复性,(3)有序性, (4)数列中的每一项都是数2数列的项与对应的序号能构成函数关系,类比函数的表示方法,想一想数列有哪些表示方法?答案数列的一般形式可以写成:a1,a2,a3,an,.除了列举法外,数列还可以用公式法、列表法、图象法来表示预习导引1数列的函数性质(1)数列是一种特殊的函数,只不过是定义在。

【数列的概念】相关DOC文档
1.1 数列的概念 课后作业(含答案)
1.1 数列的概念 课时对点练(含答案)
1.1 数列的概念 学案(含答案)
9.1 数列的概念 (一)学案(含答案)
9.1 数列的概念 (二)学案(含答案)
标签 > 数列的概念[编号:9278]