3.3 二元一次不等式(组) 与简单的线性规划问题,第三章,第1课时 二元一次不等式(组)与平面区域,观察下列不等式: (1)xy10; (2)x2y10且2x3y20,A、M、E、F、G都在直线下方,它们,常见的几类一元二次不等式求解问题,高一数学,数学素养,(1)数学运算 (2)逻辑推理 (3)
人教版高中数学必修五3.2一元二次不等式及其解法1课件Tag内容描述:
1、3.3 二元一次不等式(组) 与简单的线性规划问题,第三章,第1课时 二元一次不等式(组)与平面区域,观察下列不等式: (1)xy10; (2)x2y10且2x3y20,A、M、E、F、G都在直线下方,它们。
2、常见的几类一元二次不等式求解问题,高一数学,数学素养,(1)数学运算 (2)逻辑推理 (3)直观想象,口诀:大于取两边,小于取中间,一元二次不等式解集的求法,类型一.直接求解不等式的问题,反思:解不含参数的一元二次不等式的步骤,练习,例2.,解:,类型二.逆向求参问题,反思:已知不等式的解集求参数的解题思路,练习,例3.,解:,类型三.解含参数的一元二次不等式的问题,反思:含有参数的一元二次不等式。
3、2.1 一元二次不等式的解法,第三章 2 一元二次不等式,学习目标 1.理解一元二次方程、一元二次不等式与二次函数的关系. 2.掌握图像法解一元二次不等式. 3.会对含参数的一元二次不等式分类讨论.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 一元二次不等式的概念,思考 我们知道,方程x21的一个解是x1,解集是1,1,解集中的每一个元素均可使等式成立.那么什么是不等式x21的解?你能举出一个解吗?你能写出不等式x21的解集吗?,答案,答案 能使不等式x21成立的x的值,都是不等式的解,如x2. 不等式x21的解集为x|x1,该集合中每一个。
4、第三章 3.3 一元二次不等式及其解法,第2课时 一元二次不等式的应用及恒成立问题,学习目标 1.会解可化为一元二次不等式(组)的简单分式不等式. 2.能够从实际生活和生产中抽象出一元二次不等式的模型,并加以解决. 3.掌握与一元二次不等式有关的恒成立问题的解法.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 分式不等式的解法,答案 等价;好处是将不熟悉的分式不等式化归为已经熟悉的一元二次不等式.,梳理 一般的分式不等式的同解变形法则:,f(x)g(x)0,f(x)g(x)0,g(x)0,知识点二 一元二次不等式恒成立问题,思考 x10在区间2,3上。
5、一元二次不等式及其解法编稿:张林娟 审稿:孙永钊【学习目标】1. 了解一元二次不等式与相应函数、方程的联系,能借助函数图象解一元二次不等式及一些简单的高次不等式;2. 对给定的一元二次不等式,能设计求解的程序框图;3. 应用一元二次不等式解简单的分式不等式.【要点梳理】要点一:一元二次不等式的概念一元二次不等式:只含有一个未知数,并且未知数的最高次数是2的不等式.一元二次不等式的解:使某个一元二次不等式成立的的值.一元二次不等式的解集:一元二次不等式的所有解组成的集合.一般写为集合或区间形式.一元二次不等式的一。
6、第三章 3.3 一元二次不等式及其解法,第1课时 一元二次不等式及其解法,学习目标 1.理解一元二次方程、一元二次不等式与二次函数的关系. 2.掌握图象法解一元二次不等式. 3.体会数形结合、分类讨论的思想.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 一元二次不等式的概念,思考 我们知道,方程x21的解集是1,1,解集中的每一个元素均可使等式成立.那么你能写出不等式x21的解集吗?,答案 不等式x21的解集为x|x1,该集合中每一个元素都是不等式的解,而不等式的每一个解均属于解集.,梳理 (1)一般地,含有一个未知数,且未知数的 。
7、3.2 一元二次不等式及其解法1一元二次不等式的定义我们把只含有_个未知数,并且未知数的最高次数是_的不等式,称为一元二次不等式例如:x2x0,2x23x10,x23x0,x2x20都是一元二次不等式注:(1)一元二次不等式中的“一元”是指不等式中所要求解的未知数,并且这个未知数是唯一的,但这并不意味着不等式中不能含有其他字母,若含有其他字母,则把其他字母看成常数;(2)一元二次不等式中的“二次”是指所要求解的未知数的最高次数必须是2,且最高次项的系数不为02一元二次不等式的一般形式一元二次不等式的一般形式:ax2bxc0,ax2bxc0,a。
8、第三章 不等式,3.2 一元二次不等式及其解法(一),1.理解一元二次方程、一元二次不等式与二次函数的关系. 2.掌握图象法解一元二次不等式. 3.体会数形结合、分类讨论思想.,学习目标,题型探究,问题导学,内容索引,当堂训练,问题导学,思考,知识点一 一元二次不等式的概念,不等式x21的解集为x|x1,该集合中每一个元素都是不等式的解,而不等式的每一个解均属于解集.,答案,我们知道,方程x21的解集是1,1,解集中的每一个元素均可使等式成立.那么你能写出不等式x21的解集吗?,梳理,(1)只含有一个未知数,并且未知数的最高次数是2的不等式,称为 不。
9、第三章 不等式,3.2 一元二次不等式及其解法(二),1.会解可化为一元二次不等式(组)的简单分式不等式. 2.能够从实际生活和生产中抽象出一元二次不等式的模型,并加以解决. 3.掌握与一元二次不等式有关的恒成立问题的解法.,学习目标,题型探究,问题导学,内容索引,当堂训练,问题导学,思考,知识点一 分式不等式的解法,等价;好处是将不熟悉的分式不等式化归为已经熟悉的一元二次不等式.,0与(x3)(x2)0等价吗?将 0变形为(x3)(x2)0,有什么好处?,答案,梳理,一般的分式不等式的同解变形法则: (1) 0 ;(2) 0(3),;,f(x)g(x)0,f(x)g(x)0,g(x)0,知识。
10、32 一元二次不等式及其解法,第三章,第2课时 含参数一元二次不等式的解法,一辆汽车总重量为,时速为v(km/h),设它从刹车到停车行走的距离L与、v之间的关系式为Lkv2(k是常数)这辆汽车空车以50km/h行驶时,从刹车到停车行进了10m,求该车载有等于自身重量的货物行驶时,若要求司机在15m距离内停车,并且允许司机从得到刹车指令到实施刹车的时间为1s,汽车允许的最大时速是多少?(结果精确到1km/h),当a0时,解形如ax2bxc0(0)或ax2bxc0(0)的一元二次不等式,一般可分三步: (1)确定对应方程_的解 (2)画出对应函数_图象的简图 (3)由图象确定不等。