第二章 2.2 椭圆,2.2.2 椭圆的简单几何性质(一),学习目标 1.根据椭圆的方程研究曲线的几何性质,并正确地画出它的图形. 2.根据几何条件求出曲线方程,并利用曲线的方程研究它的性质、图形.,题型探究,问题导学,内容索引,当堂训练,问题导学,思考1,知识点一 椭圆的范围、对称性和顶点坐标,(
人教A版高中数学选修2-1课件2.2.1 椭圆及其标准方程一Tag内容描述:
1、第二章 2.2 椭圆,2.2.2 椭圆的简单几何性质(一),学习目标 1.根据椭圆的方程研究曲线的几何性质,并正确地画出它的图形. 2.根据几何条件求出曲线方程,并利用曲线的方程研究它的性质、图形.,题型探究,问题导学,内容索引,当堂训练,问题导学,思考1,知识点一 椭圆的范围、对称性和顶点坐标,(1)范围:axa,byb; (2)对称性:椭圆关于x轴、y轴、原点都对称; (3)特殊点:顶点A1(a,0),A2(a,0),B1(0,b),B2(0,b).,答案,思考2,在画椭圆图形时,怎样才能画的更准确些?,在画椭圆时,可先画一个矩形,矩形的顶点为(a,b),(a,b),(a,b),(a,。
2、第二章 2.4 抛物线,2.4.1 抛物线及其标准方程,学习目标 1.掌握抛物线的定义及焦点、准线的概念. 2.掌握抛物线的标准方程及其推导. 3.明确抛物线标准方程中p的几何意义,并能解决简单的求抛物线标准方程问题.,题型探究,问题导学,内容索引,当堂训练,问题导学,知识点一 抛物线的定义,思考1,平面内,到两定点距离相等的点的轨迹是什么?,连接两定点所得线段的垂直平分线.,答案,思考2,平面内,到两个确定平行直线l1,l2距离相等的点的轨迹是什么?,一条直线.,答案,思考3,到定点的距离与到定直线的距离相等的点的轨迹是什么?,抛物线.,答案,梳理。
3、第二章 2.3 双曲线,2.3.1 双曲线及其标准方程,学习目标 1.了解双曲线的定义、几何图形和标准方程的推导过程. 2.掌握双曲线的标准方程及其求法. 3.会利用双曲线的定义和标准方程解决简单的问题.,题型探究,问题导学,内容索引,当堂训练,问题导学,知识点一 双曲线的定义,思考,若取一条拉链,拉开它的一部分,在拉开的两边上各选择一点,分别固定在点F1,F2上,把笔尖放在点M处,拉开或闭拢拉链,笔尖经过的点可画出一条曲线,那么曲线上的点应满足怎样的几何条件?,如图,曲线上的点满足条件:|MF1|MF2|常数; 如果改变一下笔尖位置,使|MF2|M。
4、第二章 2.2 椭圆,2.2.1 椭圆及其标准方程(二),学习目标 加深理解椭圆定义及标准方程,能够熟练求解与椭圆有关的轨迹问题.,题型探究,问题导学,内容索引,当堂训练,问题导学,思考1,知识点 椭圆标准方程的认识与推导,椭圆标准方程的几何特征与代数特征分别是什么?,标准方程的几何特征:椭圆的中心在坐标原点,焦点在x轴或y轴上.,答案,思考2,依据椭圆方程,如何确定其焦点位置?,把方程化为标准形式,与x2,y2相对应的分母哪个大,焦点就在相应的轴上.,答案,思考3,观察椭圆的形状,你认为怎样选择坐标系才能使椭圆的方程较简单?并写出求解过。
5、第二章 2.2 椭圆,2.2.1 椭圆及其标准方程(一),学习目标 1.了解椭圆的实际背景,经历从具体情境中抽象出椭圆的过程、椭圆标准方程的推导与化简过程. 2.掌握椭圆的定义、标准方程及几何图形.,题型探究,问题导学,内容索引,当堂训练,问题导学,思考1,知识点一 椭圆的定义,给你两个图钉、一根无弹性的细绳、一张纸板,一支铅笔,如何画出一个椭圆?,在纸板上固定两个图钉,绳子的两端固定在图钉上,绳长大于两图钉间的距离,笔尖贴近绳子,将绳子拉紧,移动笔尖即可画出椭圆.,答案,思考2,在上述画椭圆过程中,笔尖移动需满足哪些条件?如果改变。