1题型一:综合法【例1】若110ab则下列结论不正确的是()22ab2abb2baababab【考点相似多边形及相似三角形的判定相似多边形及相似三角形的判定第10讲适用学科初中数学适用年级初三适用区域北师版区域课时时长(分钟)120知识点判断多边形是否相似相似多边形的应用应用AA证明三角形相似应用S
几何相似证明题Tag内容描述:
1、7.6直接证明与间接证明最新考纲考情考向分析1.了解直接证明的两种基本方法分析法和综合法;了解分析法和综合法的思考过程和特点2.了解反证法的思考过程和特点.常以立体几何中的证明及相关选修内容中平面几何,不等式的证明为载体加以考查,注意提高分析问题、解决问题的能力;在高考中主要以解答题的形式考查,难度为中档.1直接证明内容综合法分析法定义从已知条件出发,经过逐步的推理,最后达到待证结论的方法,是一种从原因推导到结果的思维方法从待证结论出发,一步一步地寻求结论成立的充分条件,最后达到题设的已知条件或已被证明的。
2、7.6直接证明与间接证明考情考向分析高考要求了解分析法、综合法、反证法,会用这些方法处理一些简单问题,高考一般不单独考查,会与其他知识综合在一起命题1直接证明(1)定义:直接从原命题的条件逐步推得命题成立的证明方法(2)一般形式ABC本题结论(3)综合法定义:从已知条件出发,以已知的定义、公理、定理为依据,逐步下推,直到推出要证明的结论为止这种证明方法常称为综合法推证过程(4)分析法定义:从问题的结论出发,追溯导致结论成立的条件,逐步上溯,直到使结论成立的条件和已知条件或已知事实吻合为止这种证明方法常称为分析法推。
3、直接证明与间接证明编稿:张林娟 审稿:孙永钊【学习目标】1. 知识与技能通过具体的例子了解综合法和分析法、反证法的思路过程和特点;通过已经学过的数学实例,了解直接证明的两种基本方法直接证明和间接证明,及间接证明的重要方法之反证法;能够用直接法和间接法证明一些基本的数学问题.2.过程与方法通过对实例的分析,归纳和总结的过程,培养数学理性思维能力;通过实际演练,体会综合法、分析法、反证法的证明过程及两种证明方法的特点3情感、态度与价值观通过实际参与,激发学习数学的兴趣,在学习过程中感受逻辑证明在数学已经日常。
4、直接证明与间接证明编稿:张林娟 审稿:孙永钊【学习目标】1 知识与技能通过具体的例子了解综合法和分析法、反证法的思路过程和特点;通过已经学过的数学实例,了解直接证明的两种基本方法直接证明和间接证明,及间接证明的重要方法之一反证法;能够用直接法和间接法证明一些基本的数学问题2过程与方法通过对实例的分析,归纳和总结的过程,培养数学理性思维能力;通过实际演练,体会综合法、分析法、反证法的证明过程及两种证明方法的特点3情感、态度与价值观通过实际参与,激发学习数学的兴趣,在学习过程中感受逻辑证明在数学已经日常。
5、 13.2 直接证明与间接证明直接证明与间接证明 最新考纲 考情考向分析 1.了解直接证明的两种基本方法 分析法和综合法;了解分析法和综合 法的思考过程和特点. 2.了解反证法的思考过程和特点. 本节主要内容是直接证明的方法综合法和分析 法, 间接证明的方法反证法, 它常以立体几何中 的证明及相关选修内容中平面几何, 不等式的证明为 载体加以考查, 注意提高分析问题、 解决问题的能力; 在高考中主要以解答题的形式考查,难度中档. 1直接证明 (1)综合法 定义:一般地,利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证。
6、几何证明东城区19. 如图,在 ABC 中, BAC=90, AD BC 于点 D. BF 平分 ABC 交 AD 于点 E,交 AC 于点 F. 求证: AE=AF. 19.证明: BAC=90, FBA+ AFB=90. -1 分 AD BC, DBE+ DEB=90- 2 分 BE 平分 ABC, DBE= FBA. -3 分 AFB= DEB. -4 分 DEB= FEA, AFB= FEA. AE=AF. -5 分西城区19如图, AD平分 BC, DA于点 , B的中点为 E, AC(1)求证: E (2)点 F在线段 上运动,当 FE时,图中与 DF全等的三角形是_EDCBA【解析】 (1)证明: AD平分 BC, 2, BD于点 ,。
7、几何证明专题宝山区、嘉定区23.(本题满分 12 分,第(1)小题 6 分,第(2)小题 6 分)如图 6,在正方形 ABCD中,点 M是边 BC上的一点(不与 B、 C重合) ,点 N在CD边的延长线上,且满足 90N,联结 、 A, M与边 D交于点 E.(1)求证; ;(2)如果 2,求证: E2.23.证明:(1)四边形 ABCD是正方形 , 90BCDA1 分 90M N N 1 分 18ADC 901 分 B1 分 1 分 NM 1 分(2)四边形 ACD是正方形 AC平分 BD和 A 4521B , 4521B1分 N .2 ADM 51 分 5.2C .NAEC , 90 4NE A1 分BA图 6CBANDME图 6 ACM NE1 分 1 分 AE21 分长宁区23 (本题满分 12 。
8、*4.5 相似三角形判定定理的证明 相似三角形判定定理的证明 1.会证明相似三角形判定定理; (重点) 2.运用相似三角形的判定定理解决相关问题.(难点) 一、情景导入 相似三角形的判定方法有哪些? 答: (1)两角对应相等,两三角形相似; (2)两边对应成比例且夹角相等,两三角形相似; (3)三边对应成比例,两三角形相似. 怎样证明这些结论呢? 二、合作探究 探究点:相似三角形的判定定理 。
9、*4.5 相似三角形判定定理的证明,第四章 图形的相似,导入新课,讲授新课,当堂练习,课堂小结,学习目标,1.会证明相似三角形判定定理;(重点) 2.运用相似三角形的判定定理解决相关问题.(难点),导入新课,问题:相似三角形的判定方法有哪些?, 两角对应相等,两三角形相似. 两边对应成比例且夹角相等,两三角形相似. 三边对应成比例,两三角形相似.,讲授新课,在上两节中,我们探索了三角形相似的条件,稍候我们将对它们进行证明,定理1:两角分别相等的两个三角形相似.,已知:如图,在 ABC 和ABC 中,A = A,B =B. 求证:ABC ABC,A,B,C,A,B,C,A,。
10、相似三角形 圆相关证明与计算练习题参考答案与试题解析一选择题(共7小题)1(2014泸州)如图,在直角梯形ABCD中,DCAB,DAB=90,ACBC,AC=BC,ABC的平分线分别交AD、AC于点E,F,则的值是()ABCD【考点】平行线分线段成比例;角平分线的性质;等腰直角三角形菁优网版权所有【专题】计算题【分析】作FGAB于点G,由AEFG,得出=,求出RtBGFRtBCF,再由AB=BC求解【解答】解:作FGAB于点G,DAB=90,AEFG,=,ACBC,ACB=90,又BE是ABC的平分线,FG=FC,在RtBGF和RtBCF中,RtBGFRtBCF(HL),CB=GB,AC=BC,CBA=45,AB=BC,=+1故选:C【点评】。
11、专题训练(四)相似中的综合性问题类型一三角形中的分类讨论题1.如图4-ZT-1,已知P是RtABC的斜边BC上任意一点,过点P作直线PD与直角边AB或AC相交于点D,截得的小三角形与ABC相似,那么点D的位置最多有()图4-ZT-1A.2处 B.3处 C.4处 D.5处2.将三角形纸片ABC按图4-ZT-2所示的方式折叠,使点B落在边AC上,记为点B,折痕为EF.已知AB=AC=8,BC=10.若以B,F,C为顶点的三角形与ABC相似,则BF的长度是()图4-ZT-2A.5 B.409C.247或4 D.5或4093.2019铜山月考 如图4-ZT-3,在ABC中,ACB=90,AC=3,BC=2,以AC为斜边向外作RtACD,当AD为何值时,这两个直角三角形相似.图4-ZT。
12、专题训练(三)相似三角形基本模型模型一“X”形1.如图3-ZT-1,ABCD,AD与BC相交于点O,已知AB=4,CD=3,OD=2,那么线段OA的长为.图3-ZT-12.如图3-ZT-2,在矩形ABCD中,AB=3,BC=6,点E在对角线BD上,且BE=1.8,连接AE并延长交DC于点F,则CFCD=.图3-ZT-23.2018江西 如图3-ZT-3,在ABC中,AB=8,BC=4,CA=6,CDAB,BD是ABC的平分线,交AC于点E.求AE的长.图3-ZT-3模型二“A”形4.如图3-ZT-4,在ABC中,点D,E分别在边AB,AC上,DEBC,若BD=2AD,则()图3-ZT-4A.ADAB=12 B.AEEC=12C.ADEC=12 D.DEBC=125.如图3-ZT-5,已知ADEABC,若ADE=37,则B=.。
13、20182019 学年度人教版九年级数学随堂练习班级 姓名第二十七章 相似27.1 图形的相似第 1 课时 相似图形1下列各组图形中,两个图形形状不一定相同的是( )A两个等边三角形B有一个角是 35的两个等腰三角形C两个正方形D两个圆2小张用手机拍摄得到图 2715(1),经放大后得到图 2715(2) ,图 2715(1)中的线段 AB 在图 2715(2)中的对应线段是( )图 2715AFG BFHCEH DEF3图 2716 是大众汽车的标志示意图,下面的图形中与其相似的是( )4对一个图形进行放缩时,下列说法中正确的是( )A图形中线段的长度与角的大小都保持不变B图形中线段的长度与角的大。
14、20182019 学年度人教版九年级数学随堂练习班级 姓名第二十七章 相似27.1 图形的相似第 2 课时 相似多边形1一个多边形的边长为 2,3,4,5,6,另一个和它相似的多边形的最长边为 24,则这个多边形的最短边为( )A6 B8C10 D1222018成都已知 ,且 ab2c 6.则 a 的值为 .a6 b5 c43一般认为,如果一个人的肚脐以上的高度与肚脐以下的高度符合黄金分割比,则这个人身材好看一位参加空姐选拔的选手的肚脐以上的高度为 65 cm,肚脐以下的高度为 95 cm,那么她应穿多高的鞋子才能符合黄金分割比?(精确到 1 cm,黄金分割比为 ,5 12 2.236)54如图 27111 。
15、 相似多边形及相似三角形的判定相似多边形及相似三角形的判定 第10讲 适用学科 初中数学 适用年级 初三 适用区域 北师版区域 课时时长(分钟) 120 知识点 判断多边形是否相似 相似多边形的应用 应用 AA 证明三角形相似 应用 SAS、SSS 证明三角形相似 黄金分割 相似综合 教学目标 1、掌握相似多边形的性质及应用. 2、掌握相似三角形的判定方法 3、了解黄金分割。
16、 1 题型一:综合法 【例1】若 11 0 ab ,则下列结论不正确的是 ( ) 22 ab 2 abb 2 ba ab abab 【考点】综合法 【难度】2 星 【题型】选择 【关键词】无 【解析】 取2a ,3b 代入可得。 【答案】D。 【例2】如果数列 n a是等差数列,则( ) 。 (A) 1845 aaaa (B) 1845 aaaa (C) 1845 aaaa (D) 1845 a aa a 【考点】综合法 【难度】2 星 【题型】选择 【关键词】无 【解析】 由等差数列的性质:若mnpq 则 qpnm aaaa 【答案】 (B) 。 【例3】在ABC中若2 sinbaB,则 A 等于( ) (A)30或 60 (B)45或 60 (C)60或 120 (D)30或 150 【考点。