和二元二次方程组-教师版

第第 4 4 讲讲 一元二次方程的特殊根问题一元二次方程的特殊根问题 模块一模块一 一元二次方程的公共根一元二次方程的公共根 1 1一元二次方程公共根问题的一般解法:一元二次方程公共根问题的一般解法: (1)如果公共根可以根据其中一个方程求出,则先求出公共根,代入另外一个方程,得到某一个参数的一 个

和二元二次方程组-教师版Tag内容描述:

1、第第 4 4 讲讲 一元二次方程的特殊根问题一元二次方程的特殊根问题 模块一模块一 一元二次方程的公共根一元二次方程的公共根 1 1一元二次方程公共根问题的一般解法:一元二次方程公共根问题的一般解法: (1)如果公共根可以根据其中一个方程求出,则先求出公共根,代入另外一个方程,得到某一个参数的一 个方程,解得参数 (2)如果公共根不能直接求出,则先设出公共根,然后代入原方程,通过恒等变形求出参数的。

2、 知识点 基本要求 略高要求 较高要求 一元二次方程一元二次方程 了解一元二次方程的 概念, 会将一元二次方 程化为一般形式, 并指 出各项系数; 了解一元 二次方程的根的意义 能由一元二次方程的概 念确定二次项系数中所 含字母的取值范围;会 由方程的根求方程中待 定系数的值 一元二次方程的一元二次方程的 解法解法 理解配方法, 会用直接 开平方法、 配方法、 公 式法、 因式分解法解简 单的数字系数的一元 二次方程, 理解各种解 法的依据 能选择恰当的方法解一 元二次方程;会用方程 的根的判别式判别方程 根的情况 能利用根的判别。

3、第第 5 5 讲讲 一元二次方程的构造及应用一元二次方程的构造及应用 模块一模块一 利用根的定义构造方程利用根的定义构造方程 如果m、n分别是一元二次方程()axbxca 的两根,那么有ambmc ,anbnc ,相 反的,如果已知m、n分别满足ambmc ,anbnc ,且a ,那就可以构造一个一元二次方程 ()axbxca 使得m、n是它的解 模块二模块二 利用根系关系构造方程利用根系关系。

4、 专题专题 09 09 二元一次方程组及其应用二元一次方程组及其应用 1 1二元一次方程:二元一次方程: 含有两个未知数,并且未知数的指数都是 1 的方程整式方程叫做二元一次方程.一般形式是 ax+by=c(a0,b0)。 2 2二元一次方程组:二元一次方程组:把两个二元一次方程合在一起,就组成一个二元一次方程组。 3 3二元一次方程的解:二元一次方程的解:一般地,使二元一次方程两边的值相等的未。

5、 1 专题专题 0707 二元一次方程组及其应用二元一次方程组及其应用 1二元一次方程:含有两个未知数,并且未知数的指数都是 1 的方程整式方程叫做二元一次。方程一般形 式是 ax+by=c(a0,b0)。 2二元一次方程组:把两个二元一次方程合在一起,就组成一个二元一次方程组。 3二元一次方程的解:一般地,使二元一次方程两边的值相等的未知数的值叫做二元一次方程组的解。 4二元一次方程组的解。

6、第第 2 2 讲讲 可化为一元二次方程的其他方程可化为一元二次方程的其他方程 模块一模块一 可化为一元二次方程的高次方程可化为一元二次方程的高次方程 在遇到这类可转化为一元二次方程的高次方程时,通常有两种转化方法 1 1因式分解法:因式分解法: 如果所遇到的高次方程可以因式分解成两个或者多个一元二次式或一元一次式的乘积的形式,可以用因式 分解法 2 2整体换元法:整体换元法: 在一个式子中要善于观。

7、辅导讲义学员姓名: 学科教师:年 级: 辅导科目:授课日期时 间主 题无理方程与二元二次方程组学习目标1掌握解解无理方程的一般步骤,知道解无理方程必须验根,并掌握验根的方法;2会用“换元法”解特殊的无理方程;3掌握“代入法”和“因式分解法”解二元二次方程组成的方程组教学内容1已知下列关于的方程:(1);(2);(3);(4);(5);(6);其中无理方程是_(填序号)2 方程的根是_;参考答案:1(2)(3)(5); 2;3下列方程组中,二元二次方程组的是_(填序号).(1); (2); (3); (4)4把方程化成两个一次方程_ _。

8、教师姓名 学生姓名 年 (尚孔教研院彭高钢(尚孔教研院彭高钢级 初二 上课时间 学 (尚孔教研院彭高钢(尚孔教研院彭高钢(尚孔教研院彭高钢(尚孔教研院彭高钢科 数学 课题名称 一元二次方程拓展提高 待提升的知 识点/题型 1、熟练选择并应用一元二次方程的解法; 2、熟记一元二次方程多种考查方式和解题思路; (尚孔教研院彭高钢)(尚孔教研院彭高钢)知识梳理知识梳理(尚孔教研院彭高钢)(尚孔教研院彭高钢) 一、知识结构:一、知识结构: 一元二次方程 韦达定理 根的判别 解与解法 二、考点精析二、考点精析 考点一、概念考点一。

9、 教学设计方案 教师姓名 学生姓名 年 (尚孔教研院彭高钢(尚孔教研院彭高钢级 初二 上课时间 学 (尚孔教研院彭高钢(尚孔教研院彭高钢(尚孔教研院彭高钢(尚孔教研院彭高钢科 数学 课题名称 一元二次方程的应用 待提升的知 识点/题型 1.二次三项式的因式分解; 2.一元二次方程实际问题; 3.一元二次方程其他应用. (尚孔教研院彭高钢)(尚孔教研院彭高钢)知识梳理知识梳理(尚孔教研院彭高钢)(尚孔教研院彭高钢) (尚孔教研院彭高钢(尚孔教研院彭高钢知识点一:二次三项式的因式分解知识点一:二次三项式的因式分解 1. .一元二次。

10、1二元一次方程组的应用_1.掌握二元一次方程组的简单应用;2.掌握二元一次方程组应用题的解法;3.会找应用题中的等量关系.1 列二元一次方程组解应用题的一般步骤可概括为“审、找、列、解、答” 五步,即:(1)审:通过审题,把实际问题抽象成数学问题,分析已知数和未知数,并用字母表示其中的两个未知数;(2)找:找出能够表示题意两个相等关系;(3)列:根据这两个相等关系列出必需的代数式,从而列出方程组;(4)解:解这个方程组,求出两个未知数的值;(5)答:在对求出的方程的解做出是否合理判断的基础上,写出答案2.列方程解应用题的基。

11、教师姓名 冯娜娜 学生姓名 年 级 初二 上课时间 单击此处输 入日期。 学 科 数学 课题名称 二元二次方程(组) 二元二次方程(组) 知识模块:二元二次方程知识模块:二元二次方程 1、定义:仅含有两个未知数,并且含有未知数的项的最高次数是 2 的整式方程,叫做二元二次方程 2、对二元二次方程应从以下三方面理解 (1)二元二次方程是整式方程; (2)二元二次方程含有两个未知数; (3)含有未知数的项的最高次数是 2 3、二元二次方程的一般形式 二元二次方程的一般形式为 22 0axbxycydxeyf(a、b、c、d、e、f 是常数,且 a、b、c 中至。

12、辅导讲义学员姓名: 学科教师:年 级: 辅导科目:授课日期时 间主 题无理方程与二元二次方程组学习目标1掌握解解无理方程的一般步骤,知道解无理方程必须验根,并掌握验根的方法;2会用“换元法”解特殊的无理方程;3掌握“代入法”和“因式分解法”解二元二次方程组成的方程组教学内容1已知下列关于的方程:(1);(2);(3);(4);(5);(6);其中无理方程是_(填序号)2 方程的根是_;3下列方程组中,二元二次方程组的是_(填序号).(1); (2); (3); (4)4把方程化成两个一次方程_ _【知识梳。

13、1二元一次方程组_1.掌握二元一次方程的定义和定义的应用;2.会用消元法解二元一次方程组;3.理解二元一次方程组的其它解法.1.二元一次方程的定义:含有_未知数,并且未知数的项的次数都是 1,像这样的方程叫做二元一次方程。2.二元一次方程组的定义:把具有_未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组。3.二元一次方程的解:一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解,二元一次方程有_个解。4.二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的。

14、 第第 6 6 讲讲 一一、二元一次方程的概念二元一次方程的概念 1 1 二元一次方程: 二元一次方程: 含有两个未知数, 并且含未知数的项的最高次数是 1 的整式方程, 叫做二元一次方程 二 元一次方程的一般形式一般形式为:axbyc(,)ab 【例例】xy ,xy ,xy ,xy 等都是二元一次方程 2 2二元一次方程的判定:二元一次方程的判定: 必须同时满足四个条件: (1)含有两。

15、教师姓名 冯娜娜 学生姓名 年 级 初二 上课时间 单击此处输 入日期。 学 科 数学 课题名称 二元二次方程组 二元二次方程组 知识模块:二元二次方程知识模块:二元二次方程 1、定义:仅含有两个未知数,并且含有未知数的项的最高次数是 2 的整式方程,叫做二元二次方程 2、对二元二次方程应从以下三方面理解 (1)二元二次方程是整式方程; (2)二元二次方程含有两个未知数; (3)含有未知数的项的最高次数是 2 3、二元二次方程的一般形式 二元二次方程的一般形式为 22 0axbxycydxeyf(a、b、c、d、e、f 是常数,且 a、b、c 中至少有一个。

16、教师姓名 学生姓名 年 级 初二 上课时间 学 科 数学 课题名称 二元二次方程组 知识模块:二元二次方程知识模块:二元二次方程 1、定义:仅含有两个未知数,并且含有未知数的项的最高次数是 2 的整式方程,叫做二元二次方程 2、二元二次方程的一般形式 二元二次方程的一般形式为 22 0axbxycydxeyf(a、b、c、d、e、f 是常数,且 a、b、c 二元二次方程组 中至少有一个不为零) ,其中 22 ,ax bxy cy为二次项,,dx ey为一次项,f 为常数项,a、b、c 为二次项 系数,d、e 为一次项系数 3、二元二次方程的解 能使二元二次方程左右两边的值相等。

17、教师姓名 冯娜娜 学生姓名 年 级 初二 上课时间 单击此处输 入日期。 学 科 数学 课题名称 二元二次方程(组) 二元二次方程(组) 知识模块:二元二次方程知识模块:二元二次方程 1、定义:仅含有两个未知数,并且含有未知数的项的最高次数是 2 的整式方程,叫做二元二次方程 2、对二元二次方程应从以下三方面理解 (1)二元二次方程是整式方程; (2)二元二次方程含有两个未知数; (3)含有未知数的项的最高次数是 2 3、二元二次方程的一般形式 二元二次方程的一般形式为 22 0axbxycydxeyf(a、b、c、d、e、f 是常数,且 a、b、c 中至。

18、教师姓名 学生姓名 年 级 初二 上课时间 学 科 数学 课题名称 无理方程和二元二次方程组 知识模块:无理方程的概念知识模块:无理方程的概念 (1)无理方程:方程中含有根式,且被开方数是含有未知数的代数式,这样的方程叫做无理方程,无 无理方程和二元二次方程 理方程也叫根式方程。 (2)有理方程:整式方程和分式方程统称为有理方程. (3)代数方程:有理方程和无理方程统称为代数方程. (4)无理方程、有理方程和代数方程三者的关系: 代数方程 无理方程 分式方程 整式方程 有理方程 【例 1】在方程(1)0xx, (2)120x (3) 2 32。

19、教师姓名 学生姓名 年 级 初二 上课时间 学 科 数学 课题名称 二元二次方程组 知识模块:二元二次方程知识模块:二元二次方程 1、定义:仅含有两个未知数,并且含有未知数的项的最高次数是 2 的整式方程,叫做二元二次方程 2、二元二次方程的一般形式 二元二次方程的一般形式为 22 0axbxycydxeyf(a、b、c、d、e、f 是常数,且 a、b、c 二元二次方程组 中至少有一个不为零) ,其中 22 ,ax bxy cy为二次项,,dx ey为一次项,f 为常数项,a、b、c 为二次项 系数,d、e 为一次项系数 3、二元二次方程的解 能使二元二次方程左右两边的值相等。

20、教师姓名 学生姓名 年 级 初二 上课时间 学 科 数学 课题名称 无理方程和二元二次方程组 知识模块:无理方程的概念知识模块:无理方程的概念 (1)无理方程:方程中含有根式,且被开方数是含有未知数的代数式,这样的方程叫做无理方程,无 无理方程和二元二次方程 理方程也叫根式方程。 (2)有理方程:整式方程和分式方程统称为有理方程. (3)代数方程:有理方程和无理方程统称为代数方程. (4)无理方程、有理方程和代数方程三者的关系: 代数方程 无理方程 分式方程 整式方程 有理方程 【例 1】在方程(1)0xx, (2)120x (3) 2 32。

【和二元二次方程组-教师版】相关DOC文档
标签 > 和二元二次方程组-教师版[编号:77683]