高三数学二轮复习专题2 规范答题示例2

(二二)数数 列列 1.(2019 蚌埠质检)已知数列an满足:a11,an12ann1. (1)设 bnann,证明:数列bn是等比数列; (2)设数列an的前 n 项和为 Sn,求 Sn. (1)证明 数列an满足:a11,an12ann1. 由 bnann,那么 bn1an1n1, bn 1

高三数学二轮复习专题2 规范答题示例2Tag内容描述:

1、(二二)数数 列列 1.(2019 蚌埠质检)已知数列an满足:a11,an12ann1. (1)设 bnann,证明:数列bn是等比数列; (2)设数列an的前 n 项和为 Sn,求 Sn. (1)证明 数列an满足:a11,an12ann1. 由 bnann,那么 bn1an1n1, bn 1 bn an 1n1 ann 2ann1n1 ann 2; 即公比 q2,b1a112, 数列bn是首项为 2,公比为 2 的等比数列. (2)解 由(1)可得 bn2n, ann2n, 数列an的通项公式为 an2nn, 数列an的前 n 项和为 Sn212222332nn (21222n)(123n) 2n 12n 2 2 n 2. 2.已知数列an,a11,a23,且满足 an2an4(nN*). (1)求数列an的通项公式; (2)若数列bn满足 。

2、70 分分 解答题标准练解答题标准练(二二) 1.(2019 南昌模拟)在ABC 中, 内角 A, B, C 的对边分别为 a, b, c, 已知cos A2cos C cos B 2ca b . (1)求sin C sin A的值; (2)若 cos B1 4,b2,求ABC 的面积. 解 (1)由正弦定理,得2ca b 2sin Csin A sin B , 所以cos A2cos C cos B 2sin Csin A sin B , 即(cos A2cos C)sin B(2sin Csin A)cos B, cos Asin B2cos Csin B2sin Ccos Bsin Acos B, cos Asin Bsin Acos B2sin Ccos B2cos Csin B. 化简得 sin(AB)2sin(BC), 又 ABC,所以 sin C2sin A, 因此sin C sin A2. (2)由sin C sin A。

3、,圆锥曲线,板块二 专题五 规范答题示例5,审题路线图 (1)l与x轴垂直l的方程为x1将l的方程与椭圆C的方程联立解得A点坐标得到直线AM的方程 (2)先考虑l与x轴垂直或l与x轴重合的特殊情况要证的结论再考虑l与x轴不垂直也不重合的一般情况设l的方程并与椭圆方程联立得x1x2,x1x2用过两点的斜率公式写出kMA,kMB计算kMAkMB得kMAkMB0OMAOMB,规范解答 分步得分,(1)解 由已知得F(1,0),1分,(2)证明 当l与x轴重合时,OMAOMB0. 4分 当l与x轴垂直时,OM为AB的垂直平分线, OMAOMB.5分 当l与x轴不重合也不垂直时, 设l的方程为yk(x1)(k0),6分,易知0恒成。

4、,函数与导数,板块二 专题六 规范答题示例6,典例6 (12分)(2019全国)已知函数f(x)sin xln(1x),f(x)为f(x)的导数,证明:,(2)f(x)有且仅有2个零点.,审题路线图 (1)设g(x)f(x)对g(x)求导得出g(x)的单调性,得证,断函数单调性来确定零点个数,规范解答 分步得分,2分,(2)f(x)的定义域为(1,). 6分 当x(1,0时,由(1)知,f(x)在(1,0)上单调递增.而f(0)0, 所以当x(1,0)时,f(x)0,故f(x)在(1,0)上单调递减. 又f(0)0,从而x0是f(x)在(1,0上的唯一零点;7分,当x(,)时,ln(x1)1, 所以f(x)0,从而f(x)在(,)上没有零点.11分 综上,f(x)有且仅有2个零。

5、,数 列,板块二 专题二 规范答题示例2,典例2 (12分)(2018全国)已知数列an满足a11,nan12(n1)an.设bn (1)求b1,b2,b3; (2)判断数列bn是否为等比数列,并说明理由; (3)求an的通项公式.,审题路线图 (1)将题目中的递推公式变形写出an1的表达式分别令n1,2,3求得b1,b2,b3,根据等比数列的定义判定 (3)由(2)求得bn进而求得an,规范解答 分步得分,将n1代入得a24a1, 又a11, a24,即b22,1分 将n2代入得a33a2, a312,即b34,2分 又a11,b11. 3分 (2)由条件nan12(n1)an,,又由(1)知b110,7分 数列bn是首项为1,公比为2的等比数列.9分 (3)由(2)。

6、 典例 5 (12 分)(2018 全国)设椭圆 C:x 2 2y 21 的右焦点为 F,过 F 的直线 l 与 C 交于 A, B 两点,点 M 的坐标为(2,0). (1)当 l 与 x 轴垂直时,求直线 AM 的方程; (2)设 O 为坐标原点,证明:OMAOMB. 审题路线图 1l 与 x 轴垂直l 的方程为 x1将 l的方程与椭圆 C 的方程联立解得 A 点坐标得到直 线 AM 的方程 2先考虑 l 与 x 轴垂直或 l与 x 轴重合的特殊情况要证的结论再考虑 l 与 x 轴不垂直也不 重合的一般情况设 l 的方程并与椭圆方程联立得 x1x2,x1x2用过两点的斜率公式写出 kMA,kMB计算 kMAkMB得 kMAkMB0OMAOMB. 规 范 解 答。

7、 典例 4 (12 分)(2019 全国)为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药 更有效, 为此进行动物试验.试验方案如下: 每一轮选取两只白鼠对药效进行对比试验.对于两 只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验. 当其中一种药治愈的白鼠比另一种药治愈的白鼠多 4 只时,就停止试验,并认为治愈只数多 的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的 白鼠未治愈则甲药得 1 分,乙药得1 分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈 则乙药。

8、 典例 2 (12 分)(2018 全国)已知数列an满足 a11,nan12(n1)an.设 bnan n . (1)求 b1,b2,b3; (2)判断数列bn是否为等比数列,并说明理由; (3)求an的通项公式. 审题路线图 1将题目中的递推公式变形写出 an1的表达式分别令 n1,2,3求得 b1,b2,b3 2将题目中的递推公式变形得到 an1 n12 an n 根据 bnan n 得到 bn12bn根据等比数列 的定义判定 3由2求得 bn进而求得 an 规 范 解 答 分 步 得 分 构 建 答 题 模 板 解 (1)由条件可得 an12n1 n an, 将 n1 代入得 a24a1, 又 a11, a24,即 b22,1 分 将 n2 代入得 a33a2, a312,即 b34,2 。

【高三数学二轮复习专题2 规】相关PPT文档
【高三数学二轮复习专题2 规】相关DOC文档
高三数学二轮复习解答题突破练2 数 列
高三数学二轮复习解答题标准练2
高三数学二轮复习专题5 规范答题示例5
高三数学二轮复习专题4 规范答题示例4
高三数学二轮复习专题2 规范答题示例2
标签 > 高三数学二轮复习专题2 规范答题示例2[编号:86774]