,第四章 三角函数、解三角形,五点法作图及图象变换(典例迁移),由图象确定yAsin(x)的解析式(师生共研),三角函数模型的简单应用(师生共研),第6讲 函数yAsin(x)的图象及三角函数模型的简单应用 基础达标 1函数ysin在区间上的简图是() 解析:选A.令x0,得ysin,排除B,D.由
高考数学一轮复习学案函数yAsinx的图象及应用含答案Tag内容描述:
1、第6讲 函数yAsin(x)的图象及三角函数模型的简单应用基础达标1函数ysin在区间上的简图是()解析:选A.令x0,得ysin,排除B,D.由f0,f0,排除C.2(2019温州瑞安七中高考模拟)函数ysin(2x)的图象沿x轴向左平移个单位后,得到一个偶函数的图象,则的一个可能的值为()ABC0D解析:选B.令yf(x)sin(2x),则fsinsin,因为f为偶函数,所以k,所以k,kZ,所以当k0时,.故的一个可能的值为.故选B.3(2019湖州市高三期末考试)若把函数yf(x)的图象沿x轴向左平移个单位,沿y轴向下平移1个单位,然后再把图象上每个点的横坐标伸长到原来的2倍(纵坐标保持不。
2、4.4函数yAsin(x)的图象及应用最新考纲1.结合具体实例,了解函数yAsin(x)的实际意义;能借助计算器或计算机画出yAsin(x)的图象,观察参数A,对函数图象变化的影响.2.会用三角函数解决一些简单实际问题,体会三角函数是描述周期变化现象的重要函数模型1yAsin(x)的有关概念yAsin(x)(A0,0),x0振幅周期频率相位初相ATfx2.用五点法画yAsin(x)(A0,0,xR)一个周期内的简图时,要找五个特征点如下表所示:xx02yAsin(x)0A0A03.函数ysinx的图象经变换得到yAsin(x)(A0,0)的图象的两种途径概念方法微思考1怎样从ysinx的图象变换得到ysin(x)(0,。
3、4.4函数yAsin(x)的图象及应用考情考向分析以考查函数yAsin(x)的图象的五点法画图、图象之间的平移伸缩变换、由图象求函数解析式以及利用正弦型函数解决实际问题为主,常与三角函数的性质、三角恒等变换结合起来进行综合考查,加强数形结合思想的应用意识题型为填空题,中档难度1yAsin(x)的有关概念yAsin(x)(A0,0),x0振幅周期频率相位初相ATfx2.用五点法画yAsin(x)(A0,0,xR)一个周期内的简图时,要找五个特征点如下表所示:xx02yAsin(x)0A0A03.函数ysinx的图象经变换得到yAsin(x)(A0,0)的图象的两种途径概念方法微思考1怎样从ysinx的。
4、4.4 函数yAsin(x)的图象及应用,第四章 三角函数、解三角形,ZUIXINKAOGANG,最新考纲,1.结合具体实例,了解函数yAsin(x)的实际意义;能借助计算器或计算机画出yAsin(x)的图象,观察参数A,对函数图象变化的影响. 2.会用三角函数解决一些简单实际问题,体会三角函数是描述周期变化现象的重要函数模型.,NEIRONGSUOYIN,内容索引,基础知识 自主学习,题型分类 深度剖析,课时作业,1,基础知识 自主学习,PART ONE,1.yAsin(x)的有关概念,x,知识梳理,ZHISHISHULI,2.用五点法画yAsin(x)(A0,0,xR)一个周期内的简图时,要找五个特征点 如下表示所示:,0。
5、2021 年高考理科数学一轮复习:题型全归纳与高效训练突破年高考理科数学一轮复习:题型全归纳与高效训练突破 专题专题 4.4 函数函数 yAsin(x)的图象及三角函数模型的简单应用的图象及三角函数模型的简单应用 目录 一、题型全归纳 .。
6、课时规范练(授课提示:对应学生用书第 251 页)A 组 基础对点练1(2016高考全国卷 )将函数 y2sin 的图象向右平移 个周期后,所(2x 6) 14得图象对应的函数为( D )Ay2sin By2sin(2x 4) (2x 3)Cy2sin Dy2sin(2x 4) (2x 3)2若先将函数 ysin 图象上各点的横坐标伸长到原来的 2 倍(纵坐标不(4x 6)变),再将所得图象向左平移 个单位长度,则所得函数图象的一条对称轴方程6是( D )Ax Bx12 6Cx Dx3 23(2017兴庆区校级二模)在自然界中存在着大量的周期函数,比如声波若两个声波随时间的变化规律分别为:y 13 sin(100t),y 23sin ,则这2 (100t 4)两个。
7、4.4函数yAsin(x)的图象及应用最新考纲考情考向分析1.了解函数yAsin(x)的物理意义;能画出yAsin(x)的图象2.了解参数A,对函数图象变化的影响3.会用三角函数解决一些简单实际问题,体会三角函数是描述周期变化现象的重要函数模型.以考查函数yAsin(x)的图象的五点法画图、图象之间的平移伸缩变换、由图象求函数解析式以及利用正弦型函数解决实际问题为主,常与三角函数的性质、三角恒等变换结合起来进行综合考查,加强数形结合思想的应用意识题型为选择题和填空题,中档难度.1yAsin(x)的有关概念yAsin(x)(A0,0),x0振幅周期频率相位初相ATfx。
8、14.6 函数 y=Asin(x+)的图象及简单应用A组 基础题组1.(2017浙江名校协作体)为了得到函数 y=sin 的图象,可以将函数 y=sin 的图象( )(2x+6) (2x+3)A.向左平移 个单位长度6B.向右平移 个单位长度6C.向左平移 个单位长度12D.向右平移 个单位长度12答案 C 因为 y=sin =sin ,所以仅需将函数 y=sin 的图象向左平移(2x+3) 2(x+12)+6 (2x+6)个单位长度,即可得到函数 y=sin 的图象,故选 C.12 (2x+3)2.(2017浙江嘉兴基础测试)若函数 g(x)的图象可由函数 f(x)=sin 2x+ cos 2x的图象向右平移 个36单位长度得到,则 g(x)的解析式是( )A.g(x)=2sin 2x B.g(。
9、5.5 函数 yA sin(x )的图象及应用最新考纲 考情考向分析了解函数 yAsin(x )的实际意义,掌握 yA sin(x)的图象,了解参数 A, 对函数图象变化的影响.以考查函数 yA sin(x)的图象的五点法画图、图象之间的平移伸缩变换以及由图象求函数解析式为主,常与三角函数的性质、三角恒等变换结合起来进行综合考查,加强数形结合思想的应用意识题型为选择题和填空题,中档难度.1yAsin(x)的有关概念振幅 周期 频率 相位 初相yAsin( x)(A0,0),x0 AT2f 1T 2 x2.用五点法画 yA sin(x)(A0,0,xR )一个周期内的简图时,要找五个特征点如下表所示:x0 2 3。
10、 4.4 函数函数 yAsin(x)的图象及应用的图象及应用 最新考纲 考情考向分析 1.了解函数 yAsin(x)的物理意义;能画出 y Asin(x)的图象 2.了解参数 A, 对函数图象变化的影响 3.会用三角函数解决一些简单实际问题,体会三 角函数是描述周期变化现象的重要函数模型. 以考查函数 yAsin(x)的图象的 五点法画图、图象之间的平移伸缩变 换、 由图象求函数解析式以及利用正弦 型函数解决实际问题为主, 常与三角函 数的性质、 三角恒等变换结合起来进行 综合考查, 加强数形结合思想的应用意 识 题型为选择题和填空题, 中档难度. 1yAsin(x)的有关概。