二次函数讲义Tag内容描述:
1、1. 函数 y = ax2+ bx + c ( a 0 )图象与 x 轴交于点 (2,0) ,顶点坐标为 ( 1,n) , 其中 n 0 ,以下结论正确的是() 。 abc 0 ; 函数 y = ax2+ bx + c ( a 0 )在 x = 1 , x = 2 处的函数值相等; 函数 y = kx + 1 的图象与 y = ax2+ bx + c ( a 0 )的函数图象总有两个不同的交点; 。
2、1. 如图,抛物线经过点 A(1,0) , B(5,0) , C(0, 10 3 ) 三点,顶点为 D ,设点 E(x,y) 是抛 物线上一动点,且在 x 轴下方。 (1)求抛物线的解析式。 (2)当点 E(x,y) 运动时,试求三角形 OEB 的面积 S 与 x 之间的函数关系式,并求出面 积 S 的最大值。 (3)在 y 轴上确定一点 M ,使点 M 到 D 、 B 两点距离之和 d = MD。
3、 考点 11 二次函数 二次函数是非常重要的函数,年年都会考查,总分值为 1820 分,预计 2021 年各地中考还会考,它经常以一个 压轴题独立出现,有的地区也会考察二次函数的应用题,小题的考察主要是二次函数的图象和性质及或与 几何图形结合来考查. 一、一、二次函数的概念二次函数的概念:一般地,形如 y=ax2+bx+c(a,b,c 是常数,a0)的函数,叫做二次函数 二、二次函数解析式的。
4、 第第 1010 讲讲 二次函数和方程、不等式综合二次函数和方程、不等式综合 模块模块一:一:二次函数和方程综合二次函数和方程综合 1函数 11 ya xb和二次函数 2 22 ya xb xc的交点 (1)交点求解,联立方程组 11 2 22 ya xb ya xb xc ,并代入求解 (2)交点个数,联立方程组 11 2 22 ya xb ya xb xc ,消元得到一元二次方程。
5、第第 1 17 7 讲讲 二次函数与面积二次函数与面积 解这类问题一般用到以下与面积相关的知识:图形割补、等积转换、等比转化. 【例题讲解】【例题讲解】 例题例题 1 如图 1, 过ABC 的三个顶点分别作出与水平线垂直的三条直线, 外侧两条直线之间的距离叫ABC 的“水平宽” (a) ,中间的这条直线在ABC内部线段的长度叫ABC的“铅垂高(h) ” 我们可得出一种 计算三角形面积的新方法: ABC S 1 2 ah,即三角形面积等于水平宽与铅垂高乘积的一半 解答问题: 如图 2,顶点为 C(1,4)的抛物线 yax2bxc 交x轴于点 A(3,0) ,交 y轴于点 B (1。
6、 1 考点分析考点分析:二次函数的实际应用考察销售利润方案问题是最常见的,并且 根据二次函数的性质,在一定的范围内,求出符合要求的最大值得出最大利润, 那么我们就要对销售利润问题的知识掌握熟练,以下知识点能很好的帮助我们解 决这类题目。 遇到二次函数的应用题我们需要考虑以下问题:遇到二次函数的应用题我们需要考虑以下问题: 1.看清题目,理清楚条件,弄懂题目的意思,知道要求什么,便于我们找准 合适的自变量 X 与相应的函数 Y,这是开头也是非常重要的。 2.条件整理清楚后,抓住数量关系列出函数关系式,如果要研究面积。
7、 2.4 幂函数与二次函数幂函数与二次函数 最新考纲 考情考向分析 1.了解幂函数的概念 2.结合函数 yx,yx2,yx3,y1 x,y 1 2 x 的图象,了解它们的变化情况 3.理解并掌握二次函数的定义,图象及性质 4.能用二次函数,方程,不等式之间的关系解 决简单问题. 以幂函数的图象与性质的应用为主,常与 指数函数、对数函数交汇命题;以二次函 数的图象与性质的应用为主,常与方程、 不等式等知识交汇命题,着重考查函数与 方程,转化与化归及数形结合思想,题型 一般为选择、填空题,中档难度. 1幂函数 (1)幂函数的定义 一般地,形如 yx的函数称。
8、 考试内容考试内容 基本要求基本要求 略高要求略高要求 较高要求较高要求 二次二次函数函数 了解二次函数的意义;会利用描 点法画出二次函数的图像 能通过分析实际问题中的情境 确定二次函数的表达式;能从图 像上认识二次函数的性质;会根 据二次函数的解析式求其图象 与坐标轴的交点坐标,会确定图 像的顶点、对称轴和开口方向; 会利用二次函数的图像求出一 元二次方程的近似解 能用二次函数解决 简单的实际问题;能 解决二次函数与其 他知识结合的有关 问题 一、二次函数的定义 黑体小四 一般地,形如 2 yaxbxc(a b c ,为常数,0a 。
9、高考数学函数专题训练 二次函数一、选择题1.二次函数,如果(其中),则()A B C D【答案】D【解析】由得所以故选D.2.已知函数有两个不同的零点,-2和,三个数适当排序后既可成为等差数列,也可成为等比数列,则函数的解析式为( )ABCD【答案】C【解析】由题意,函数有两个不同的零点,可得,则,又由和,三个数适当排序后既可成为等差数列,也可成为等比数列,不妨设,则,解得,所以,所以,故选C.3.若二次函数y=ax2+bx+c和y=cx2+bx+a(ac0,ac)。
10、学科教师辅导讲义学员编号: 年 级:九年级(下)课 时 数:3学员姓名:辅导科目:数 学学科教师:授课主题第01讲-二次函数授课类型T同步课堂P实战演练S归纳总结教学目标熟练掌握二次函数的定义、图像与性质、三种表达式及最值等综合应用问题。授课日期及时段T(Textbook-Based)同步课堂体系搭建一、 知识概念(一) 二次函数的定义一般地,如果yax2bxc(a,b,c是常数,a0),那么y叫做x的二次函数注意:1、二次项系数a0;yax2bxc(a,b,c是常数,a0)叫做二次函数的一般式;2、ax2bxc必须是整式;3、一次项、常数项也可以为零,一次项和常数。
11、学科教师辅导讲义学员编号: 年 级:九年级(下)课 时 数:3学员姓名:辅导科目:数 学学科教师:授课主题第08讲-二次函数授课类型T同步课堂P实战演练S归纳总结教学目标熟练掌握二次函数的定义、图像与性质、三种表达式及最值等综合应用问题。授课日期及时段T(Textbook-Based)同步课堂体系搭建一、 知识概念(一) 二次函数的定义一般地,如果yax2bxc(a,b,c是常数,a0),那么y叫做x的二次函数注意:1、二次项系数a0;yax2bxc(a,b,c是常数,a0)叫做二次函数的一般式;2、ax2bxc必须是整式;3、一次项、常数项也可以为零,一次项和常数。
12、学科教师辅导讲义学员编号: 年 级:九年级(下)课 时 数:3学员姓名:辅导科目:数 学学科教师:授课主题第08讲-二次函数授课类型T同步课堂P实战演练S归纳总结教学目标熟练掌握二次函数的定义、图像与性质、三种表达式及最值等综合应用问题。授课日期及时段T(Textbook-Based)同步课堂体系搭建一、 知识概念(一) 二次函数的定义一般地,如果yax2bxc(a,b,c是常数,a0),那么y叫做x的二次函数注意:1、二次项系数a0;yax2bxc(a,b,c是常数,a0)叫做二次函数的一般式;2、ax2bxc必须是整式;3、一次项、常数项也可以为零,一次项和常数。
13、学科教师辅导讲义学员编号: 年 级:九年级(下)课 时 数:3学员姓名:辅导科目:数 学学科教师:授课主题第08讲-二次函数授课类型T同步课堂P实战演练S归纳总结教学目标熟练掌握二次函数的定义、图像与性质、三种表达式及最值等综合应用问题。授课日期及时段T(Textbook-Based)同步课堂体系搭建一、 知识概念(一) 二次函数的定义一般地,如果yax2bxc(a,b,c是常数,a0),那么y叫做x的二次函数注意:1、二次项系数a0;yax2bxc(a,b,c是常数,a0)叫做二次函数的一般式;2、ax2bxc必须是整式;3、一次项、常数项也可以为零,一次项和常数。
14、学科教师辅导讲义学员编号: 年 级:九年级(下)课 时 数:3学员姓名:辅导科目:数 学学科教师:授课主题第08讲-二次函数授课类型T同步课堂P实战演练S归纳总结教学目标熟练掌握二次函数的定义、图像与性质、三种表达式及最值等综合应用问题。授课日期及时段T(Textbook-Based)同步课堂体系搭建一、 知识概念(一) 二次函数的定义一般地,如果yax2bxc(a,b,c是常数,a0),那么y叫做x的二次函数注意:1、二次项系数a0;yax2bxc(a,b,c是常数,a0)叫做二次函数的一般式;2、ax2bxc必须是整式;3、一次项、常数项也可以为零,一次项和常数。
15、学科教师辅导讲义学员编号: 年 级:九年级(下)课 时 数:3学员姓名:辅导科目:数 学学科教师:授课主题第08讲-二次函数授课类型T同步课堂P实战演练S归纳总结教学目标 深刻理解并运用二次函数的相关知识点; 掌握常考重点题型及相关解法,突破中考数学第22、23题; 提高综合分析与解题能力。授课日期及时段T(Textbook-Based)同步课堂体系搭建一、 知识梳理1、求证“两线段相等”的问题2、“某函数图象上是否存在一点,使之与另两个定点构成等腰三角形”的问题3、平行于y轴的动线段长度的最大值”的问题4、“在定直线(常为抛物线的对。
16、学科教师辅导讲义学员编号: 年 级:九年级(下)课 时 数:3学员姓名:辅导科目:数 学学科教师:授课主题第08讲-二次函数授课类型T同步课堂P实战演练S归纳总结教学目标 深刻理解并运用二次函数的相关知识点; 掌握常考重点题型及相关解法,突破中考数学第22、23题; 提高综合分析与解题能力。授课日期及时段T(Textbook-Based)同步课堂体系搭建一、 知识梳理1、求证“两线段相等”的问题2、“某函数图象上是否存在一点,使之与另两个定点构成等腰三角形”的问题3、平行于y轴的动线段长度的最大值”的问题4、“在定直线(常为抛物线的对。
17、学科教师辅导讲义学员编号: 年 级:九年级(下)课 时 数:3学员姓名:辅导科目:数 学学科教师:授课主题第02讲-二次函数授课类型T同步课堂P实战演练S归纳总结教学目标熟练掌握二次函数的定义、图像与性质、三种表达式及最值等综合应用问题。授课日期及时段T(Textbook-Based)同步课堂体系搭建一、 知识概念(一) 二次函数的定义一般地,如果yax2bxc(a,b,c是常数,a0),那么y叫做x的二次函数注意:1、二次项系数a0;yax2bxc(a,b,c是常数,a0)叫做二次函数的一般式;2、ax2bxc必须是整式;3、一次项、常数项也可以为零,一次项和常数。
18、 学科教师辅导讲义学员编号: 年 级:九年级(下) 课 时 数:3学员姓名:辅导科目:学科教师:授课主题第03讲-二次函数授课类型T同步课堂P实战演练S归纳总结教学目标 掌握二次函数的定义; 掌握二次函数的一般式; 能掌握二次函数的简单应用。授课日期及时段T(Textbook-Based)同步课堂体系搭建一、知识框架二、知识概念1、二次函数的概念一般地,如果yax2bxc(a,b,c是常数,a0),那么y叫做x的二次函数注意:(1)二次项系数a0;yax2bxc(a,b,c是常数,a0)叫做二次函数的一般式;(2)ax2bxc必须是整式;(3)一次项可以为零,常数项。
19、专题训练(四)二次函数图像信息专题类型之一根据抛物线的特征确定a,b,c及与其有关的代数式的符号1.已知二次函数y=-x2+2bx+c,当x1时,y的值随x值的增大而减小,则实数b的取值范围是()A.b-1 B.b-1C.b1 D.b12.2019通辽 在平面直角坐标系中,二次函数y=ax2+bx+c(a0)的图像如图4-ZT-1所示,现给出以下结论:abc3 B.a5。