中考数学一轮复习讲义第08讲-二次函数(提高)-学案

上传人:hua****011 文档编号:126806 上传时间:2020-03-15 格式:DOCX 页数:13 大小:1.36MB
下载 相关 举报
中考数学一轮复习讲义第08讲-二次函数(提高)-学案_第1页
第1页 / 共13页
中考数学一轮复习讲义第08讲-二次函数(提高)-学案_第2页
第2页 / 共13页
中考数学一轮复习讲义第08讲-二次函数(提高)-学案_第3页
第3页 / 共13页
中考数学一轮复习讲义第08讲-二次函数(提高)-学案_第4页
第4页 / 共13页
中考数学一轮复习讲义第08讲-二次函数(提高)-学案_第5页
第5页 / 共13页
点击查看更多>>
资源描述

1、学科教师辅导讲义学员编号: 年 级:九年级(下)课 时 数:3学员姓名:辅导科目:数 学学科教师:授课主题第08讲-二次函数授课类型T同步课堂P实战演练S归纳总结教学目标熟练掌握二次函数的定义、图像与性质、三种表达式及最值等综合应用问题。授课日期及时段T(Textbook-Based)同步课堂体系搭建一、 知识概念(一) 二次函数的定义一般地,如果yax2bxc(a,b,c是常数,a0),那么y叫做x的二次函数注意:1、二次项系数a0;yax2bxc(a,b,c是常数,a0)叫做二次函数的一般式;2、ax2bxc必须是整式;3、一次项、常数项也可以为零,一次项和常数项可以同时为零; x的取值范

2、围是全体实数(二) 二次函数的图像与性质1、二次函数图像的基本性质二次函数yax2bxc(a,b,c为常数,a0)图象(a0)(a0)开口方向开口向上开口向下对称轴直线x直线x顶点坐标增减性当x时,y随x的增大而减小;当x时,y随x的增大而增大当x时,y随x的增大而增大;当x时,y随x的增大而减小最值当x时,y有最小值当x时,y有最大值2、二次函数图像的平移 方法一: 总结:在原有函数的基础上“值正右移,负左移;值正上移,负下移” 方法二:沿轴平移:向上(下)平移个单位,变成(或)沿轴平移:向左(右)平移个单位,变成(或)总结:概括成八个字“左加右减,上加下减” 3、二次函数的图象与各项系数之

3、间的关系 (1) 二次项系数的正负决定开口方向,的大小决定开口的大小(2)一次项系数:在确定的前提下,决定了抛物线对称轴的位置, “左同右异”。 (3) 常数项:决定了抛物线与轴交点的位置 总之,只要都确定,那么这条抛物线就是唯一确定的(三) 二次函数的表达式1、一般式:(,为常数,);2、顶点式:(,为常数,);3、两根式:(,是抛物线与轴两交点的横坐标).使用条件:1、已知抛物线上三点的坐标,一般选用一般式;2、已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3、已知抛物线与轴的两个交点的横坐标,一般选用两根式;4、已知抛物线上纵坐标相同的两点,常选用顶点式(四) 二次函数的应用解题

4、一般方法步骤(先构造二次函数模型):(1)列出二次函数的解析式,列解析式时,要根据自变量的实际意义,确定自变量的取值范围(2)在自变量取值范围内,运用公式法或配方法或对称轴判定法,求出二次函数的最大值或最小值(五) 二次函数与一元二次方程(1)二次函数yax2bxc(a0),当y0时,就变成了ax2bxc0(a0)(2)ax2bxc0(a0)的解是抛物线与x轴交点的横坐标(3)当0时,有两个不同的交点;当0时,有一个交点;当c0时,抛物线与x轴没有交点考点一: 二次函数的定义例1、若y=(1+m)是二次函数,且开口向下,则m的值为()A3 B3 C+3 D0例2、下列函数关系中,可以看做二次函

5、数y=ax2+bx+c模型的是()A在一定距离内,汽车行驶的速度与行驶的时间的关系B我国人中自然增长率为1%,这样我国总人口数随年份变化的关系C竖直向上发射的信号弹,从发射到落回地面,信号弹的高度与时间的关系(不计空气阻力)D圆的周长与半径之间的关系考点二: 二次函数的图像与性质例1、一次函数y=ax+b(a0)与二次函数y=ax2+bx+c(a0)在同一平面直角坐标系中的图象可能是()A B C D例2、如图,已知二次函数y=ax2+bx+c(a0)的图象与x轴交于点A(1,0),与y轴的交点B在(0,2)和(0,1)之间(不包括这两点),对称轴为直线x=1下列结论:abc0; 4a+2b+

6、c0 ;4acb28a ;a;bc其中含所有正确结论的选项是()A B C D例3、若抛物线y=x22x+3不动,将平面直角坐标系xOy先沿水平方向向右平移一个单位,再沿铅直方向向上平移三个单位,则原抛物线图象的解析式应变为()Ay=(x2)2+3 By=(x2)2+5 Cy=x21 Dy=x2+4考点三: 二次函数的表达式例1、把二次函数y=x2x+3配方化为y=a(xh)2+k形式()Ay=(x2)2+2 By=(x2)2+4 Cy=(x+2)2+4 Dy=(x1)2+3例2、二次函数图象如图所示,则其解析式是()Ay=x2+2x+4 By=x2+2x+4Cy=x22x+4 Dy=x2+2

7、x+3考点四: 二次函数的应用例1、将抛物线y=x2+2x+3在x轴上方的部分沿x轴翻折至x轴下方,图象的剩余部分不变,得到一个新的函数图象,那么直线y=x+b与此新图象的交点个数的情况有()种A6 B5 C4 D3例2、某校校园内有一个大正方形花坛,如图甲所示,它由四个边长为3米的小正方形组成,且每个小正方形的种植方案相同其中的一个小正方形ABCD如图乙所示,DG=1米,AE=AF=x米,在五边形EFBCG区域上种植花卉,则大正方形花坛种植花卉的面积y与x的函数图象大致是()A B C D例3、某玩具厂生产一种玩具,本着控制固定成本,降价促销的原则,使生产的玩具能够全部售出据市场调查,若按每

8、个玩具280元销售时,每月可销售300个若销售单价每降低1元,每月可多售出2个据统计,每个玩具的固定成本Q(元)与月产销量y(个)满足如下关系:月产销量y(个)160200240300每个玩具的固定成本Q(元)60484032(1)写出月产销量y(个)与销售单价x (元)之间的函数关系式;(2)求每个玩具的固定成本Q(元)与月产销量y(个)之间的函数关系式;(3)若每个玩具的固定成本为30元,则它占销售单价的几分之几?(4)若该厂这种玩具的月产销量不超过400个,则每个玩具的固定成本至少为多少元?销售单价最低为多少元?考点五:二次函数与一元二次方程例1、已知抛物线y=ax22x+1与x轴没有交

9、点,那么该抛物线的顶点所在的象限是()A第四象限 B第三象限 C第二象限 D第一象限例2、如图,一段抛物线y=x(x3)(0x3),记为C1,它与x轴交于点O和A1;将C1绕A1旋转180得到C2,交x轴于A2;将C2绕A2旋转180得到C3,交x轴于A3,如此进行下去,得到一条“波浪线”若点P(41,m)在此“波浪线”上,则m的值为()A2 B2 C0 DP(Practice-Oriented)实战演练实战演练 课堂狙击1、若y=(a2+a)是二次函数,那么()Aa=1或a=3 Ba1或a0 Ca=3 Da=12、下列函数关系中,是二次函数的是()A在弹性限度内,弹簧的长度y与所挂物体的质量

10、x之间的关系B当距离一定时,汽车行驶的时间t与速度v之间的关系C矩形的面积S和矩形的宽x之间的关系D等边三角形的面积S与边长x之间的关系3、二次函数y=ax2+bx+c(a0)图象上部分点的坐标(x,y)对应值列表如下:x32101y323611则该函数图象的对称轴是()A直线x=3 B直线x=2 C直线x=1 D直线x=04、如图是抛物线y=ax2+bx+c(a0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间则下列结论:ab+c0;3a+b=0;b2=4a(cn);一元二次方程ax2+bx+c=n1有两个不相等的实数根其中正确结论的个数是()A1 B2

11、 C3 D45、将抛物线y=x24x4向左平移3个单位,再向上平移5个单位,得到抛物线的表达式为()Ay=(x+1)213 By=(x5)23 Cy=(x5)213 Dy=(x+1)236、二次函数y=ax2+bx与一次函数y=ax+b(a0)在同一平面直角坐标系中可能的图象为()A B C D7、如图,已知抛物线y=ax2+bx+c与轴交于A、B两点,顶点C的纵坐标为2,现将抛物线向右平移2个单位,得到抛物线y=a1x2+b1x+c1,则下列结论:b0;ab+c0;阴影部分的面积为4;若c=1,则b2=4a正确的是()A B C D8、若二次函数y=x2+2x+m2+1的最大值为4,则实数m

12、的值为()A B C2 D19、如图,抛物线y=x23x+与x轴相交于A、B两点,与y轴相交于点C,点D是直线BC下方抛物线上一动点,过点D作y轴的平行线,与直线BC相交于点E(1)求直线BC的解析式;(2)当线段DE的长度最大时,求点D的坐标 课后反击1、若y=(1+m)是二次函数,且开口向下,则m的值为()A3 B3 C+3 D02、在同一平面直角坐标系内,一次函数y=ax+b与二次函数y=ax2+5x+b的图象可能是()A BCD3、如图,抛物线y=ax2+bx+c(a0)的对称轴为直线x=1,与x轴的一个交点坐标为(1,0),其部分图象如图所示,下列结论:4acb2;方ax2+bx+c

13、=0的两个根是x1=1,x2=3;3a+c0;当y0时,x的取值范围是1x3;当x0时,y随x增大而增大其中结论正确的个数是()A4个 B3个 C2个 D1个4、已知二次函数y=ax2+4x+a1的最小值为2,则a的值为()A3 B1 C4 D4或15、工艺商场按标价销售某种工艺品时,每件可获利45元;按标价的八五折销售该工艺品8件与将标价降低35元销售该工艺品12件所获利润相等(1)该工艺品每件的进价、标价分别是多少元?(2)若每件工艺品按(1)中求得的进价进货,标价售出,工艺商场每天可售出该工艺品100件若每件工艺品降价1元,则每天可多售出该工艺品4件问每件工艺品降价多少元出售,每天获得的

14、利润最大?获得的最大利润是多少元?6、如图,已知ABC的三个顶点坐标分别为A(4,0)、B(1,0)、C(2,6)(1)求经过A、B、C三点的抛物线解析式;(2)设直线BC交y轴于点E,连接AE,求证:AE=CE;(3)设抛物线与y轴交于点D,连接AD交BC于点F,试问以A、B、F为顶点的三角形与ABC相似吗?(4)若点P为直线AE上一动点,当CP+DP取最小值时,求P点的坐标直击中考1、【2016广州】对于二次函数y=+x4,下列说法正确的是()A当x0时,y随x的增大而增大 B当x=2时,y有最大值3C图象的顶点坐标为(2,7) D图象与x轴有两个交点2、【2016赤峰】函数y=k(xk)

15、与y=kx2,y=(k0),在同一坐标系上的图象正确的是()A B C D3、【2016临沂】二次函数y=ax2+bx+c,自变量x与函数y的对应值如表:x543210y402204下列说法正确的是()A抛物线的开口向下 B当x3时,y随x的增大而增大C二次函数的最小值是2 D抛物线的对称轴是x=4、【2016兰州】二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=1,有以下结论:abc0;4acb2;2a+b=0;ab+c2其中正确的 结论的个数是()A1 B2 C3 D45、【2015深圳】如图1,关于x的二次函数y=x2+bx+c经过点A(3,0),点C(0,3),点D为二次函

16、数的顶点,DE为二次函数的对称轴,E在x轴上(1)求抛物线的解析式;(2)DE上是否存在点P到AD的距离与到x轴的距离相等?若存在求出点P,若不存在请说明理由;(3)如图2,DE的左侧抛物线上是否存在点F,使2SFBC=3SEBC?若存在求出点F的坐标,若不存在请说明理由6、【2014深圳】如图,直线AB的解析式为y=2x+4,交x轴于点A,交y轴于点B,以A为顶点的抛物线交直线AB于点D,交y轴负半轴于点C(0,4)(1)求抛物线的解析式;(2)将抛物线顶点沿着直线AB平移,此时顶点记为E,与y轴的交点记为F,求当BEF与BAO相似时,E点坐标;记平移后抛物线与AB另一个交点为G,则SEFG与SACD是否存在8倍的关系?若有请直接写出F点的坐标S(Summary-Embedded)归纳总结重点回顾二次函数的定义;二次函数的图像与性质;二次函数的表达式与应用;二次函数与一元二次方程。名师点拨本章内容丰富且综合性较强,也是中考的必考点与重难点,结合教案做好总结及勤学多练是掌握的关键。学霸经验 本节课我学到 我需要努力的地方是13

展开阅读全文
相关资源
相关搜索
资源标签

当前位置:首页 > 初中 > 初中数学 > 数学中考 > 一轮复习