第3课时 直线与平面垂直的判定和性质 学案含答案

第2课时直线与平面平行的性质 学习目标1.理解直线与平面平行的性质定理.2.掌握直线与平面平行的性质定理,并能应用性质定理证明一些简单的问题. 知识点直线与平面平行的性质定理 表示 定理 图形 文字 符号 直线与平面平行的性质定理 如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这

第3课时 直线与平面垂直的判定和性质 学案含答案Tag内容描述:

1、第2课时直线与平面平行的性质学习目标1.理解直线与平面平行的性质定理.2.掌握直线与平面平行的性质定理,并能应用性质定理证明一些简单的问题.知识点直线与平面平行的性质定理表示定理图形文字符号直线与平面平行的性质定理如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行ab一、线面平行的性质定理的应用命题角度1用线面平行的性质定理证明线线平行例1如图所示,在四棱锥PABCD中,底面ABCD是平行四边形,AC与BD交于点O,M是PC的中点,在DM上取一点G,过G和AP作平面交平面BDM于GH,求证:APGH.证。

2、1.2.4平面与平面的位置关系第1课时两平面平行的判定与性质学习目标1.了解平面与平面的位置关系,掌握面面平行的判定定理、性质定理.2.会利用“线线平行”“线面平行”及“面面平行”相互之间的转化,来证明“线线平行”“线面平行”及“面面平行”等问题.3.了解两个平面间的距离的概念.知识点一两个平面的位置关系位置关系图形表示符号表示公共点平面与平面平行没有公共点平面与平面相交l有一条公共直线知识点二平面与平面平行的判定定理表示定理图形文字符号两个平面平行的判定定理如果一个平面内有两条相交直线都平行于另一个平面,那么。

3、1.2.3直线与平面的位置关系第1课时直线与平面平行的判定学习目标1.掌握直线与平面的三种位置关系,会判断直线与平面的位置关系.2.掌握空间中直线与平面平行的判定定理.知识点一直线与平面的位置关系位置关系直线a在平面内直线a在平面外直线a与平面相交直线a与平面平行公共点有无数个公共点有且只有一个公共点没有公共点符号表示aaAa图形表示提示:利用公共点的个数可以判断直线与平面的位置关系.知识点二直线与平面平行的判定定理表示定理图形文字符号直线与平面平行的判定定理如果平面外一条直线和这个平面内的一条直线平行,那么这条直。

4、第3课时两平面垂直的性质学习目标1.掌握平面与平面垂直的性质定理.2.能运用性质定理解决一些简单的问题.3.了解平面与平面垂直的判定定理和性质定理间的相互联系.知识点一平面与平面垂直的性质定理文字语言如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面符号语言,l,a,ala图形语言作用面面垂直线面垂直;作面的垂线.知识点二空间垂直关系的转化点睛:线面垂直的定义、判定定理、性质定理都可以实现垂直关系的转化.一、平面与平面垂直的性质定理例1如图所示,P是四边形ABCD所在平面外的一点,四边形ABCD是D。

5、第3课时直线与平面垂直的判定和性质一、选择题1.已知PA矩形ABCD,下列结论中,不正确的是()A.PBBC B.PDCDC.PDBD D.PABD答案C解析依题意画出几何图形,如图,显然PDBD不正确;BC平面PAB,则PBBC;CD平面PAD,则PDCD;PA平面ABCD,则PABD.2.ABC所在的平面为,直线lAB,lAC,直线mBC,mAC,l,m为两条不重合的直线,则直线l,m的位置关系是()A.平行 B.垂直C.相交 D.以上都有可能答案A解析直线lAB,lAC,且ABACA,l平面,同理直线m平面.由线面垂直的性质定理可得lm.3.已知空间四边形ABCD的四边相等,则它的两对角线AC,BD的关系是()A.垂直且相。

标签 > 第3课时 直线与平面垂直的判定和性质 学案含答案[编号:171558]