八年级数学三角形证明

期末复习(一) 三角形01 本章结构图三角形与 三 角 形 有 关 的 线 段 边高中 线角 平 分 线 )三 角 形 的 内 角 和 、外 角 和多 边 形 的 内 角 和 、外 角 和 )02 重难点突破重难点 1 三角形的三边关系【例 1】 已知三角形的三边长分别是 3,8,x,若 x 的值为

八年级数学三角形证明Tag内容描述:

1、期末复习(一) 三角形01 本章结构图三角形与 三 角 形 有 关 的 线 段 边高中 线角 平 分 线 )三 角 形 的 内 角 和 、外 角 和多 边 形 的 内 角 和 、外 角 和 )02 重难点突破重难点 1 三角形的三边关系【例 1】 已知三角形的三边长分别是 3,8,x,若 x 的值为偶数,则 x 的值有(D )A6 个 B5 个 C 4 个 D3 个【方法归纳】 通过多个条件确定三角形第三边的方法:1(包头中考)长为 9,6,5,4 的四根木条,选其中三根组成三角形 ,选法有(C)A1 种 B2 种 C3 种 D4 种2(朝阳中考)一个三角形两边长分别是 2 和 3,若它的第三边长为奇数 ,则这。

2、第第 1 章章 三角形的证明单元综合训练三角形的证明单元综合训练 1已知如图,ADBC,ABBC,CDDE,CDED,AD2,BC3,则ADE 的面积为( ) A1 B2 C5 D无法确定 2如图,已知AOEBOE15,EFOB,ECOB 于点 C,EGOA 于点 G,若 EC3,则 OF 长 度是( ) A3 B4 C5 D6 3已知:如图,在ABC 中,边 AB 的垂直平分线分别交 BC、。

3、12.1 全等三角形,第十二章 全等三角形,导入新课,讲授新课,当堂练习,课堂小结,八年级数学上(RJ)教学课件,情境引入,学习目标,1.理解并掌握全等三角形的概念及其基本性质. (重点) 2.能找准全等三角形的对应边,理解全等三角形的对应角相等.(难点) 3.能进行简单的推理和计算,并解决一些实际问题.(难点),导入新课,观察与思考,下列各组图形的形状与大小有什么特点?,(1),(2),(3),(4),(5),讲授新课,问题1:观察思考:每组中的两个图形有什么特点?, ,问题2:观察思考:每组中的两个图形有什么特点?, ,归纳总结,全等图形定义。

4、2.3 等腰三角形,我们前面已经学习了三角形的一些性质,那么等腰三角形除了具有一般三角形的性质外,还具有哪些特殊的性质呢?,新知探究,任意画一个等腰三角形ABC,其中AB=AC,如图.,作ABC 关于顶角平分线AD所在直线的轴反射,,由于1=2,AB=AC,因此:,D,1,2,射线AB的像是射线AC, 射线AC的像是射线 ; 线段AB的像是线段AC, 线段AC的像是线段 ; 点B的像是点C, 点C的像是点 ; 线段BC的像是线段CB. 从而等腰三角形ABC关于直线 对称.,AB,AB,B,AD,由于点D的像是点D, 因此线段DB的像是线段 , 从而AD是底边BC上的 . 由于射线DB的像是射线DC。

5、2.5 全等三角形同步检测一、选择题 1.如图,已知 AB=AD,1=2=50,D=100,那么ACB 的度数为( ) A. 30 B. 40 C. 50 D. 602.如图,已知ABC 的六个元素,则下面甲、乙、丙三个三角形中和ABC 全等的图形是( )A. 甲和乙 B. 乙和丙 C. 只有乙 D. 只有丙3.已知ABCDEF,且A=100,E=35,则F=( ) A. 35 B. 45 C. 55 D. 704.如图,点 B、E 在线段 CD 上,若C=D,则添加下列条件,不一定能使ABCEFD 的是( )A. BC=FD,AC=ED B. A=DEF,AC=EDC. AC=ED,AB=EF D. ABC=EFD,BC=FD5.如图,在正方形 ABCD 中,AB=2,延长 BC 到点 E,使 CE=1,连接 DE。

6、22.3 三角形的中位线,第二十二章 四边形,导入新课,讲授新课,当堂练习,课堂小结,1.理解中位线的概念和性质;(重点) 2.能够利用中位线解决相关问题. (重点、难点),学习目标,如图,有一块三角形的蛋糕,准备平均分给两个小朋友,要求两人所分的大小相同,请设计合理的解决方案;若平均分给四个小朋友,要求他们所分的大小都相同,请设计合理的解决方案;,导入新课,情境引入,讲授新课,问题1:你能将任意一个三角形分成四个全等的三角形吗?,合作探究,问题2:连接每两边的中点,看看得到了什么样的图形?,四个全等的三角形,连接三角形两边中点的。

7、11.1.2 三角形的高、 中线与角平分线 11.1.3 三角形的稳定性,1.掌握三角形中三条重要的线段的概念; 2.了解三角形的稳定性在日常生活中的应用.,你还记得“过一点画已知 直线的垂线”吗?,从三角形的一个顶点,向它的对边,所在直线作垂线,,顶点,和垂足,之间的线段,叫做三角形这边上的高,,简称三角形的高.,如图, 线段AD是BC边上的高.,任意画一个锐角ABC,请你画出BC边上的高.,A,B,C,锐角三角形的三条高,每人画一个锐角三角形. (1) 你能画出这个三角形的三条高吗?,(2) 这三条高之间有怎样的位置关系?,将你的结果与同伴进行交流.,锐角三角形的。

8、12.1 全等三角形,第十二章 全等三角形,1知道什么是全等形、全等三角形及全等三角形的 对应元素; 2知道全等三角形的性质,能用符号正确地表示两 个三角形全等; 3能熟练找出两个全等三角形的对应角、对应边,根据刚才的图形回答:,一个图形经过平移,翻折,旋转后,位置变化了,但 和都没有改变,即平移,翻折,旋转前 后的图形_.,能够完全重合的两个图形叫做全等形.,形状,大小,全等,你还能说出生活中的其它一些全等图形吗?,能够完全重合的两个三角形叫做全等三角形.,如果ABC与DEF会互相重合,顶点A与顶点_重合, 顶点B与顶点_重合,顶点C与顶点_。

9、三角形的中位线教学目标:1了解三角形中位线的定义;2掌握三角形的中位线定理;(重点)3综合运用平行四边形的判定及三角形的中位线定理解决问题(难点)教学过程:一、情境导入如图所示,吴伯伯家有一块等边三角形的空地 ABC,已知点 E, F 分别是边 AB, AC 的中点,量得 EF5 米,他想把四边形 BCFE 用篱笆围成一圈放养小鸡,你能求出需要篱笆的长度吗?二、合作探究探究点:三角形的中位线【类型一】 利用三角形中位线定理求线段的长如图,在 ABC 中, D.E 分别为 AC.BC 的中点, AF 平分 CAB,交 DE 于点 F.若DF3,则 AC 的长为( )A. B3 C6 。

10、学科教师辅导讲义学员编号: 年 级:八年级(下)课 时 数:3学员姓名:辅导科目:数 学学科教师:授课主题第01讲-三角形的证明授课类型T同步课堂P实战演练S归纳总结教学目标 掌握等腰三角形、直角三角形的概念与性质; 掌握线段的垂直平分线与角平分线的性质与定理; 掌握各种思想的运用。授课日期及时段T(Textbook-Based)同步课堂体系搭建一、 知识梳理1、等腰三角形的性质定理(1)两角分别相等且其中一组等角的对边相等的两个三角形全等。(AAS)(2)等腰三角形的两底角相等。即等边对等角。(3)推论:等腰三角形顶角的平分线、底边。

11、学科教师辅导讲义学员编号: 年 级:八年级(下)课 时 数:3学员姓名:辅导科目:数 学学科教师:授课主题第01讲-三角形的证明授课类型T同步课堂P实战演练S归纳总结教学目标 掌握等腰三角形、直角三角形的概念与性质; 掌握线段的垂直平分线与角平分线的性质与定理; 掌握各种思想的运用。授课日期及时段T(Textbook-Based)同步课堂体系搭建一、 知识梳理1、等腰三角形的性质定理(1)两角分别相等且其中一组等角的对边相等的两个三角形全等。(AAS)(2)等腰三角形的两底角相等。即等边对等角。(3)推论:等腰三角形顶角的平分线、底边。

12、 1 第一章第一章 三角形的证明三角形的证明 一、选择题(每小题 3 分,共 30 分) 1下列长度的三条线段能组成直角三角形的是( ) A4,5,6 B2,3,4 C1,1, 2 D1,2,2 2若三角形三个内角的比为 123,则它的最长边与最短边的比为( ) A31 B21 C32 D41 3如图,ABCADC90,E是AC的中点,若BE3,则DE的长为( ) A3 B。

13、第2章 四边形,2.4 三角形的中位线,2.4 三角形的中位线,目标突破,总结反思,第2章 四边形,知识目标,2.4 三角形的中位线,知识目标,通过作图,结合数形结合思想,能正确理解三角形中位线的概念及三角形中位线定理,并能利用三角形中位线定理进行计算与证明,目标突破,目标 能利用三角形中位线定理进行计算与证明,图241,2.4 三角形的中位线,2.4 三角形的中位线,2.4 三角形的中位线,【归纳总结】 三角形中位线与三角形中线的异同,2.4 三角形的中位线,例2 教材补充例题 如图242,D是ABC内一点,BDCD,AD12,BD8,CD6,E,F,G,H分别是边AB,AC,C。

14、1.1 全等三角形,结论:这两个图形完全重合,请观察,并说出你看到的现象,能够完全重合的两个平面图形,叫做全等形.,这两个五角星就是全等五角星,这两个正方形就是全等正方形,全等图形必须形状、大小完全相同,形状 相同,大小 相同,及时反馈,请观察,并说出你看到的现象,结论:这两个三角形重合,特别地,能够完全重合的两个三角形,叫全等三角形.,A,B,C,D,E,。

15、期末专项复习三角形、全等三角形一、选择题(每小题3分,共30分)1.下列说法中正确的是( )A.三角形的内角中至少有两个锐角B.三角形的内角中至少有两个钝角C.三角形的内角中至少有一个直角D.三角形的内角中至少有一个钝角2.三条线段长度分别为3、4、6,则以此三条线段为边所构成的三角形按角分类是( )A.锐角三角形B.直角三角形C.钝角三角形D.无法确定3.一个多边形的内角和与外角和相等,则这个多边形是( )A.四边形B.五边形C.六边形D.八边形4.将一副直角三角板,按如图所示叠放在一起,则图中的度数是( )A.B.C.D.5.如图,在方格纸中。

16、学科教师辅导讲义学员编号: 年 级:八年级(下)课 时 数:3学员姓名:辅导科目:数 学学科教师:授课主题第01讲-三角形的证明授课类型T同步课堂P实战演练S归纳总结教学目标 掌握等腰三角形、直角三角形的概念与性质; 掌握线段的垂直平分线与角平分线的性质与定理; 掌握各种思想的运用。授课日期及时段T(Textbook-Based)同步课堂体系搭建一、 知识梳理1、等腰三角形的性质定理(1)两角分别相等且其中一组等角的对边相等的两个三角形全等。(AAS)(2)等腰三角形的两底角相等。即等边对等角。(3)推论:等腰三角形顶角的平分线、底边。

17、学科教师辅导讲义学员编号: 年 级:八年级(下)课 时 数:3学员姓名:辅导科目:数 学学科教师:授课主题第01讲-三角形的证明授课类型T同步课堂P实战演练S归纳总结教学目标 掌握等腰三角形、直角三角形的概念与性质; 掌握线段的垂直平分线与角平分线的性质与定理; 掌握各种思想的运用。授课日期及时段T(Textbook-Based)同步课堂体系搭建一、 知识梳理1、等腰三角形的性质定理(1)两角分别相等且其中一组等角的对边相等的两个三角形全等。(AAS)(2)等腰三角形的两底角相等。即等边对等角。(3)推论:等腰三角形顶角的平分线、底边。

18、1. 已知:AB=4 ,AC=2 ,D 是 BC 中点,111749AD 是整数,求 ADADB C解:延长 AD 到 E,使 AD=DE D 是 BC 中点 BD=DC 在ACD 和BDE 中AD=DE BDE=ADC BD=DC ACD BDE AC=BE=2 在ABE 中 AB-BEAEAB+BE AB=4 即 4-22AD4+2 1AD 3 AD=22. 已知:D 是 AB 中点,ACB=90 ,求证: 2CABDABC延长 CD 与 P,使 D 为 CP 中点。连接 AP,BPDP=DC,DA=DB ACBP 为平行四边形 又ACB=90 平行四边形 ACBP 为矩形AB=CP=1/2AB3. 已知:BC=DE,B= E ,C= D,F 是 CD 中点,求证:1=2ABC DEF21证明:连接 BF 和 EF BC=ED,CF=DF,BCF= EDF 三角形 BCF 全等于三角形 EDF(。

19、,三角形,教学课件,湘教版八年级上册,01 新课导入,目录,03 典型例题,02 新知探究,04 拓展提高,05 课堂小结,06 作业布置,01 新课导入,新课导入,对于生活中的这些图形,同学们能找出其中三角形吗?又是怎样找出来的呢?下面我们就来学习有关三角形的数学知识。,02 新知探究,新知探究,三角形的概念,观察下面三角形的形成过程,说一说什么叫三角形?,定义:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.,A,B,C,三角形中有几条线段?有几个角?,有三条线段,三个角. 边:线段AB,BC,CA是三角形的边, 顶点:点A,B,C是三角形。

20、2.1 三角形,观察下图,找一找图中的三角形,并把它们勾画出来. 你还能举出一些实例吗?,新知探究,不在同一直线上的三条线段首尾相接所构成的图形叫作三角形.,新知归纳,三角形可用符号“”来表示,如图中的三角形可记作“ABC”,读作“三角形ABC”.,新知归纳,其中,点A,B,C叫作ABC的顶点;,A,B,C叫作ABC的内角(简称ABC的角);,线段AB,BC,CA叫作ABC的边.,通常A,B,C的对边BC,AC,AB 可分别用a,b,c来表示.,新知探究,三角形中,有的三边各不相等,有的两边相等,有的三边都相等.,两条边相等的三角形叫作等腰三角形.,新知探究,在等。

【八年级数学三角形证明】相关PPT文档
【八年级数学三角形证明】相关DOC文档
标签 > 八年级数学三角形证明[编号:178913]