2021年中考数学分类专题突破17 勾股定理训练含答案解析

专题专题 19 19 三角形综合三角形综合 1直线 MN 与直线 PQ 相交于 O,POM60 ,点 A 在射线 OP 上运动,点 B 在射线 OM 上运动 (1)如图 1,BAO70 ,已知 AE、BE 分别是BAO 和ABO 角的平分线,试求出AEB 的度数 (2) 如图 2, 已知 AB 不平

2021年中考数学分类专题突破17 勾股定理训练含答案解析Tag内容描述:

1、专题专题 19 19 三角形综合三角形综合 1直线 MN 与直线 PQ 相交于 O,POM60 ,点 A 在射线 OP 上运动,点 B 在射线 OM 上运动 (1)如图 1,BAO70 ,已知 AE、BE 分别是BAO 和ABO 角的平分线,试求出AEB 的度数 (2) 如图 2, 已知 AB 不平行 CD, AD、 BC 分别是BAP 和ABM 的角平分线, 又 DE、 CE 分别是ADC 和。

2、专题专题 20 20 正方形的判定与性质正方形的判定与性质 一选择题 1下列说法不正确的是( ) A对角线互相垂直的矩形是正方形 B对角线相等的菱形是正方形 C有一个角是直角的平行四边形是正方形 D邻边相等的矩形是正方形 解:A、正确对角线互相垂直的矩形是正方形; B、正确对角线相等的菱形是正方形; C、错误应该是有一个角是直角的平行四边形是矩形; D、正确邻边相等的矩形是正方形; 故选:C 2如。

3、专题专题 15 15 锐角三角函数锐角三角函数 一、选择题一、选择题 1. 下列式子错误 的是( ) A. cos40 sin50 B. tan15 tan75 1 C. sin225 cos225 1 D. sin60 2sin30 【答案】【答案】D 【解析】逐项分析如下: 选项 逐项分析 正误 A cos40 sin(90 40 )sin50 B tan15 tan75 1 tan75 。

4、专题专题 35 35 一次函数压轴题一次函数压轴题 1如图,在平面直角坐标系中,O 为坐标原点,直线 l:yx+8 与 x 轴交于点 A,与 y 轴交于点 B,直 线 l2与直线 l 交于 C 点,tanCOA2 (1)求点 C 的坐标; (2)动点 P 从点 A 出发,沿线段 AB 以每秒 5 个单位的速度向终点 B 运动,同时动点 Q 从点 B 出发, 沿线段 BO 以每秒 4 个单位的速度向。

5、专题专题 06 06 圆心角、弧、弦的关系圆心角、弧、弦的关系 一选择题 1 如图, AB 是O 的弦, 半径 OCAB, D 为圆周上一点, 若的度数为 50 , 则ADC 的度数为 ( ) A20 B25 C30 D50 解:的度数为 50 , BOC50 , 半径 OCAB, , ADCBOC25 故选:B 2如图所示,在O 中,C、D 分别是 OA、OB 的中点,MCAB、NDAB,M。

6、专题专题 29 29 一次函数应用综合一次函数应用综合 1如图,在平面直角坐标系中,O 为坐标原点,直线 l:yx+8 与 x 轴交于点 A,与 y 轴交于点 B,直 线 l2与直线 l 交于 C 点,tanCOA2 (1)求点 C 的坐标; (2)动点 P 从点 A 出发,沿线段 AB 以每秒 5 个单位的速度向终点 B 运动,同时动点 Q 从点 B 出发, 沿线段 BO 以每秒 4 个单位的速。

7、专题专题 36 36 反比例函数选择题反比例函数选择题 1如图,l1是反比例函数 y在第一象限内的图象,且经过点 A(1,2)l1关于 x 轴对称的图象为 l2, 那么 l2的函数表达式为( ) Ay(x0) By(x0) Cy(x0) Dy(x0) 解:A(1,2)关于 x 轴的对称点为(1,2) 所以 l2的解析式为:y , 因为 l1是反比例函数 y 在第一象限内的图象, 所以 x0 故选。

8、专题专题 04 04 切线的判定与性质切线的判定与性质 一选择题 1下列说法中,正确的是( ) A圆的切线垂直于经过切点的半径 B垂直于切线的直线必经过切点 C垂直于切线的直线必经过圆心 D垂直于半径的直线是圆的切线 解:A、圆的切线垂直于经过切点的半径;故本选项正确; B、经过圆心且垂直于切线的直线必经过切点;故本选项错误; C、经过切点且垂直于切线的直线必经过圆心;故本选项错误; D、经过半径。

9、专题专题 05 05 扇形面积的计算扇形面积的计算 一选择题 1如图,在矩形 ABCD 中,AB4,AD2,分别以点 A、C 为圆心,AD、CB 为半径画弧,交 AB 于点 E, 交 CD 于点 F,则图中阴影部分的面积是( ) A42 B8 C82 D84 解:矩形 ABCD, ADCB2, S阴影S矩形S半圆2 42282, 故选:C 2如图所示,O 是以坐标原点 O 为圆心,4 为半径的圆。

10、专题专题 07 07 圆的切线证明圆的切线证明 1如图,等边 ABC 内接于O,P 是上任意一点(不与点 A、B 重合),连 AP、BP,过点 C 作 CMBP 交 PA 的延长线于点 M (1)求APC 和BPC 的度数试; (2)探究 PA、PB、PM 之间的关系; (3)若 PA1,PB2,求四边形 PBCM 的面积 解:(1)ABC 是等边三角形, ABCBACACB60 , , AP。

11、专题专题 08 08 圆中的长度计算圆中的长度计算 1如图所示,AB 是O 的直径,B30 ,弦 BC6,ACB 的平分线交O 于 D,连 AD (1)求直径 AB 的长 (2)求阴影部分的面积(结果保留 ) 解:(1)AB 为O 的直径, ACB90 , B30 , AB2AC, AB2AC2+BC2, AB2AB2+62, AB4 (2)连接 OD AB4, OAOD2, CD 平分ACB,。

12、专题专题 16 16 三角形中位线定理三角形中位线定理 一选择题 1在 ABC 中,D、E 分别是 AB、AC 的中点,则下列说法正确的是( ) ACEBC BDEAB CAEDC DAC 解:D,E 分别是 AB,AC 的中点, DE 是 ABC 的中位线, DEBC,故 B 选项说法错误; CE 与 BC 不一定相等,故 A 选项说法错误; BD 与 DE 不一定相等,B 选项说法错误; 由。

13、专题专题 10 10 垂径定理实际应用垂径定理实际应用 一选择题 1一根水平放置的圆柱形输水管道横截面如图所示,其中有水部分水面宽 0.8 米,最深处水深 0.2 米,则 此输水管道的直径是( ) A0.5 B1 C2 D4 解:设半径为 r,过 O 作 OEAB 交 AB 于点 D,连接 OA、OB, 则 ADAB 0.80.4 米, 设 OAr,则 ODrDEr0.2, 在 Rt OAD 中。

14、专题专题 03 03 圆周角定理圆周角定理 一选择题 1 如图, 在半径为 5 的O 中, 弦 AB6, 点 C 是优弧上一点 (不与 A、 B 重合) , 则 cosC 的值为 ( ) A B C D 解:作直径 AD,连接 BD, ABD90 ,AD2 510, 在 Rt ABD 中,BD8, cosD , CD, cosC 故选:C 2如图所示,AB 是O 直径,D35 ,则BOC 等。

15、2021 年中考数学复习圆专题年中考数学复习圆专题 专题专题 0101 切线长定理切线长定理 一选择题 1如图,PA,PB 切O 于 A,B 两点,CD 切O 于点 E,交 PA,PB 于 C,D若O 的半径为 1, PCD 的周长等于 2,则线段 AB 的长是( ) A B3 C2 D3 解:PA,PB 切O 于 A、B 两点,CD 切O 于点 E,交 PA,PB 于 C,D, ACEC,DE。

16、专题专题 02 02 切割线定理切割线定理 一选择题 1如图,PA 切O 于 A,PBC 是O 的割线,如果 PB2,PC4,则 PA 的长为( ) A2 B2 C4 D2 解:PA2PBPC8,PB2,PC4, PA2 故选:B 2如图,点 P 是O 外一点,PAB 为O 的一条割线,且 PAAB, PO 交O 于点 C,若 OC3, OP5, 则 AB 长为( ) A B C D 解:设 。

17、专题专题 18 18 勾股定理实际应用勾股定理实际应用 一选择题 1如图,一根长 5 米的竹竿 AB 斜靠在竖直的墙上,这时 AO 为 4 米,若竹竿的顶端 A 沿墙下滑 2 米至 C 处,则竹竿底端 B 外移的距离 BD( ) A小于 2 米 B等于 2 米 C大于 2 米 D以上都不对 解:由题意得:在 Rt AOB 中,OA4 米,AB5 米, OB3 米, 在 Rt COD 中,OC2 。

18、专题专题 18 18 勾股定理实际应用勾股定理实际应用 一选择题 1如图,一根长 5 米的竹竿 AB 斜靠在竖直的墙上,这时 AO 为 4 米,若竹竿的顶端 A 沿墙下滑 2 米至 C 处,则竹竿底端 B 外移的距离 BD( ) A小于 2 米 B等于 2 米 C大于 2 米 D以上都不对 解:由题意得:在 Rt AOB 中,OA4 米,AB5 米, OB3 米, 在 Rt COD 中,OC2 。

19、专题专题 17 17 勾股定理训练勾股定理训练 一选择题 1一直角三角形两直角边长分别为 4 和 3,则斜边长为( ) A8 B7 C6 D5 解:由勾股定理得,斜边长5, 故选:D 2在 Rt ABC 中,C90 ,且 c4,若 a3,那么 b 的值是( ) A1 B5 C D 解:在 Rt ABC 中,C90 , 由勾股定理得,b, 故选:C 3如图,在 ABC 中,ACB90 ,AC8,BC。

20、专题专题 17 17 勾股定理训练勾股定理训练 一选择题 1一直角三角形两直角边长分别为 4 和 3,则斜边长为( ) A8 B7 C6 D5 解:由勾股定理得,斜边长5, 故选:D 2在 Rt ABC 中,C90 ,且 c4,若 a3,那么 b 的值是( ) A1 B5 C D 解:在 Rt ABC 中,C90 , 由勾股定理得,b, 故选:C 3如图,在 ABC 中,ACB90 ,AC8,BC。

【2021年中考数学分类专题突】相关DOC文档
标签 > 2021年中考数学分类专题突破17 勾股定理训练含答案解析[编号:103755]