专题专题 28 28 四边形中的三角形全等问题四边形中的三角形全等问题 1、如图 1,已知正方形 ABCD,E 是线段 BC 上一点,N 是线段 BC 延长线上一点,以 AE 为边在直线 BC 的上方作正方形 AEFG (1)连接 GD,求证 DGBE; (2)连接 FC,求 tanFCN 的值;
2021年中考数学分类专题突破08 圆中的长度计算含答案解析Tag内容描述:
1、专题专题 28 28 四边形中的三角形全等问题四边形中的三角形全等问题 1、如图 1,已知正方形 ABCD,E 是线段 BC 上一点,N 是线段 BC 延长线上一点,以 AE 为边在直线 BC 的上方作正方形 AEFG (1)连接 GD,求证 DGBE; (2)连接 FC,求 tanFCN 的值; (3)如图 2,将图 1 中正方形 ABCD 改为矩形 ABCD,AB3,BC8,E 是线段 BC。
2、专题专题 13 13 直角三角形的性质直角三角形的性质 一选择题 1下列条件中,不能确定一个直角三角形的条件是( ) A已知两条直角边 B已知两个锐角 C已知一边和一个锐角 D已知一条直角边和斜边 解:A、已知两条直角边,可以确定一个直角三角形; B、一直两个锐角,若两个锐角的和不等于 90 ,则不能确定一个直角三角形; C、已知一边和一个锐角,可以得到一直角,则能确定一个直角三角形; D、已知一。
3、专题八专题八 与圆有关的证明与计算与圆有关的证明与计算 类型 1 与圆有关的性质有关的证明与计算 1在平面直角坐标系中,点 O 为坐标原点,A,B,C 三点的坐标分别为 A(2,0),B(4,0),C(0,5),点 D 在第一象限内,且ADB45 .线段 CD 的长的最小值为_ 2如图,AB 是O 的直径,弦 CDAB 于点 E,点 P 在O 上,1C. (1)求证:CBPD; (2)若。
4、专题专题 31 31 一次函数的图象与性质一次函数的图象与性质 一、选择题一、选择题 1. 在平面直角坐标系中,将函数 3yx 的图象向上平移 6 个单位长度,则平移后的图象与 x 轴的交点坐标 为 A(2,0) B(2,0) C(6,0) D(6,0) 【答案】【答案】B 【解析】根据函数图象平移规律,可知 3yx 向上平移 6 个单位后得函数解析式应为36yx, 此时与x轴相交,则0y , 3。
5、专题专题 22 22 四边形中的动点综合问题四边形中的动点综合问题 1、 如图, 已知MON90 , A, B 分别是边 OM 和 ON 上的点, 四边形 ACDB 和四边形 OEFC 都是正方形 (1)当 OA2,OB1 时,求 OC 的长 (2)当 OB1,点 A 在直线 OM 上运动时,求 OC 的最小值 (3)设 S CDFy,OAx,求 y 关于 x 的函数关系式 解:(1)如图 1 。
6、专题专题 23 23 四边形中的旋转综合问题四边形中的旋转综合问题 1、如图(1),将正方形 ABCD 与正方形 GECF 的顶点 C 重合,当正方形 GECF 的顶点 G 在正方形 ABCD 的对角线 AC 上时,的值为 如图(2),将正方形 CEGF 绕点 C 顺时针方向旋转 a 角(0 a45 ),猜测 AG 与 BE 之间的数量关 系,并说明理由 如图(3),将正方形 CEGF 绕点 。
7、专题专题 25 25 四边形中的平移综合问题四边形中的平移综合问题 1、如图,在四边形 ABCD 中,ADBC,且 ADBC,连接 BD,现将三角形 ABD 平移到三角形 ECF 的位 置 (1)指出平移的方向和平移的距离; (2)求证:AFAD+BC; (3)若 ADBC,三角形 ABD 的面积为 15,求四边形 ABCF 的面积 解:(1)平移的方向是点 B 到点 C 的方向,平移的距离是线。
8、专题专题 24 24 四边形中的对称综合问题四边形中的对称综合问题 1、如图,在矩形纸片 ABCD 中,已知 AB2,BC2,点 E 在边 CD 上移动,连接 AE,将多边形 ABCE 沿直线 AE 翻折,得到多边形 ABCE,点 B、C 的对应点分别为点 B、C (1)当点 E 与点 C 重合时,求 DF 的长; (2)若 BC分别交边 AD,CD 于点 F,G,且DAE22.5 ,求 DFG。
9、专题专题 2121 四边形中的存在性问题四边形中的存在性问题 1、已知,在 ABC 中,BAC90 ,ABC45 ,点 D 为直线 BC 上一动点(点 D 不与点 B、C 重合), 以 AD 为边做正方形 ADEF,连接 CF (1)如图,当点 D 在线段 BC 上时,直接写出线段 CF、BC、CD 之间的数量关系 (2)如图,当点 D 在线段 BC 的延长线上时,其他件不变,则(1)中的三条。
10、专题专题 27 27 四边形中的面积综合问题四边形中的面积综合问题 1、 如图, 在 ABCD 中, ACBD 于点 O, 点 E 为 BC 中点, 连接 OE, OE, 则 ABCD 的周长为 ( ) A4 B6 C8 D12 解:ACBD, ABCD 为菱形,则其四边相等 且点 E 为斜边 BC 中点, OEBEEC , BC2, ABCD 的周长4BC8 故选:C 2、如图,已知某广场。
11、专题专题 20 20 正方形的判定与性质正方形的判定与性质 一选择题 1下列说法不正确的是( ) A对角线互相垂直的矩形是正方形 B对角线相等的菱形是正方形 C有一个角是直角的平行四边形是正方形 D邻边相等的矩形是正方形 解:A、正确对角线互相垂直的矩形是正方形; B、正确对角线相等的菱形是正方形; C、错误应该是有一个角是直角的平行四边形是矩形; D、正确邻边相等的矩形是正方形; 故选:C 2如。
12、专题专题 06 06 圆心角、弧、弦的关系圆心角、弧、弦的关系 一选择题 1 如图, AB 是O 的弦, 半径 OCAB, D 为圆周上一点, 若的度数为 50 , 则ADC 的度数为 ( ) A20 B25 C30 D50 解:的度数为 50 , BOC50 , 半径 OCAB, , ADCBOC25 故选:B 2如图所示,在O 中,C、D 分别是 OA、OB 的中点,MCAB、NDAB,M。
13、专题专题 04 04 切线的判定与性质切线的判定与性质 一选择题 1下列说法中,正确的是( ) A圆的切线垂直于经过切点的半径 B垂直于切线的直线必经过切点 C垂直于切线的直线必经过圆心 D垂直于半径的直线是圆的切线 解:A、圆的切线垂直于经过切点的半径;故本选项正确; B、经过圆心且垂直于切线的直线必经过切点;故本选项错误; C、经过切点且垂直于切线的直线必经过圆心;故本选项错误; D、经过半径。
14、专题专题 26 26 四边形中的线段长度问题四边形中的线段长度问题 1、如图,平行四边形 ABCD 的对角线 AC 与 BD 相交于点 O,BAC90 ,AC6,BD8,则 CD 的长 为( ) A B5 C D10 解: ABCD 的对角线 AC 与 BD 相交于点 O, BODO,AOCO,ABCD, BAC90 ,AC6,BD8, BO4,OA3, , 故选:A 2、如图,E、F 分别是。
15、专题专题 07 07 圆的切线证明圆的切线证明 1如图,等边 ABC 内接于O,P 是上任意一点(不与点 A、B 重合),连 AP、BP,过点 C 作 CMBP 交 PA 的延长线于点 M (1)求APC 和BPC 的度数试; (2)探究 PA、PB、PM 之间的关系; (3)若 PA1,PB2,求四边形 PBCM 的面积 解:(1)ABC 是等边三角形, ABCBACACB60 , , AP。
16、专题专题 05 05 扇形面积的计算扇形面积的计算 一选择题 1如图,在矩形 ABCD 中,AB4,AD2,分别以点 A、C 为圆心,AD、CB 为半径画弧,交 AB 于点 E, 交 CD 于点 F,则图中阴影部分的面积是( ) A42 B8 C82 D84 解:矩形 ABCD, ADCB2, S阴影S矩形S半圆2 42282, 故选:C 2如图所示,O 是以坐标原点 O 为圆心,4 为半径的圆。
17、专题专题 09 09 圆中的长度与面积、动点问题圆中的长度与面积、动点问题 1定义:三角形一个内角的平分线和与另一个内角相邻的外角平分线相交所成的锐角称为该三角形第三个 内角的遥望角 (1)如图 1,E 是 ABC 中A 的遥望角,若A,请用含 的代数式表示E (2)如图 2,四边形 ABCD 内接于O,四边形 ABCD 的外角平分线 DF 交O 于点 F,连结 BF 并延长交 CD 的延长线于。
18、专题专题 09 09 圆中的长度与面积、动点问题圆中的长度与面积、动点问题 1定义:三角形一个内角的平分线和与另一个内角相邻的外角平分线相交所成的锐角称为该三角形第三个 内角的遥望角 (1)如图 1,E 是 ABC 中A 的遥望角,若A,请用含 的代数式表示E (2)如图 2,四边形 ABCD 内接于O,四边形 ABCD 的外角平分线 DF 交O 于点 F,连结 BF 并延长交 CD 的延长线于。
19、专题专题 08 08 圆中的长度计算圆中的长度计算 1如图所示,AB 是O 的直径,B30 ,弦 BC6,ACB 的平分线交O 于 D,连 AD (1)求直径 AB 的长 (2)求阴影部分的面积(结果保留 ) 解:(1)AB 为O 的直径, ACB90 , B30 , AB2AC, AB2AC2+BC2, AB2AB2+62, AB4 (2)连接 OD AB4, OAOD2, CD 平分ACB,。
20、专题专题 08 08 圆中的长度计算圆中的长度计算 1如图所示,AB 是O 的直径,B30 ,弦 BC6,ACB 的平分线交O 于 D,连 AD (1)求直径 AB 的长 (2)求阴影部分的面积(结果保留 ) 解:(1)AB 为O 的直径, ACB90 , B30 , AB2AC, AB2AC2+BC2, AB2AB2+62, AB4 (2)连接 OD AB4, OAOD2, CD 平分ACB,。