2020届高三精准培优专练十四 外接球文 教师版

精准培优专练 2020届高三好教育精准培优专练 培优点二十 书面表达 一、真题在线 (2019全国I书面表达)假定你是李华,暑假在伦敦学习,得知当地美术馆要剧版中国画展。请写一封信申请做志愿者,内容包括: 1.写信目的; 2.个人优势; 3.能做的事情。 注意: 1.词数100左右; 2.可以适当增

2020届高三精准培优专练十四 外接球文 教师版Tag内容描述:

1、精准培优专练2020届高三好教育精准培优专练培优点二十 书面表达一、真题在线(2019全国I书面表达)假定你是李华,暑假在伦敦学习,得知当地美术馆要剧版中国画展。请写一封信申请做志愿者,内容包括:1.写信目的;2.个人优势;3.能做的事情。注意:1.词数100左右;2.可以适当增加细节,以使行文连贯;3.结束语已为你写好。_。

2、精准培优专练2020届高三好教育精准培优专练培优点八 状语从句一、 真题在线1.【2019天津单项选择】Tom is so independent that he never asks his parents opinion _ he wants their support.A. sinceB. onceC. unlessD. after【答案】C【解析】考查连词辨析。句意:汤姆是如此独立,以至于他从来不征求父母的意见,除非他想得到他们的支持。A. since既然;B. once一旦;C. unless除非;D. after在之后。故选C符合语境。2.【2018天津单项选择】Lets not pick these peaches until this weekend _they get sweet enough to be eaten.A. eve。

3、精准培优专练2020届高三好教育精准培优专练培优点二 函数的零点一、求函数的零点例1:若幂函数的图象过点,则函数的零点是( )ABCD【答案】B【解析】设,则,故,所以,由,得,所以函数的零点为二、根据零点求解析式中的参数值例2:若函数与存在相同的零点,则的值为( )A或B或C或D或【答案】C【解析】由,解得或函数与存在相同的零点,也是方程的根即或,解得或三、零点存在性定理应用例3:函数一定存在零点的区间是( )ABCD【答案】B【解析】在上单调递增,根据零点存在性定理,易知B选项符合条件四、讨论含参数方程根的个数或函数。

4、精准培优专练2020届高三好教育精准培优专练培优点十一 数列求通项公式一、公式法例1:数列的前项和,则( )ABCD【答案】C【解析】因为数列的前项和,所以当时,当时,符合上式,所以综上二、构造法例2:已知数列满足,(1)求证:数列是等比数列;(2)求数列的通项公式【答案】(1)证明见解析;(2)【解析】(1)证明:,又,是等比数列,首项为,公比为(2)由(1)可得,解得三、累加累乘法例3:已知数列满足,求数列的通项公式【答案】【解析】,且,即,由累乘法得,则数列是首项为,公差为的等差数列,通项公式为对点增分集训一。

5、精准培优专练2020届高三好教育精准培优专练培优点十 等差、等比数列一、等差数列性质例1:已知数列,为等差数列,若,则 【答案】【解析】,为等差数列,也为等差数列,二、等比数列性质例2:已知数列为等比数列,若,则 【答案】100【解析】三、等差等比数列综合问题例3:已知等比数列中,若,成等差数列,则公比 【答案】或【解析】由题可得:,再由等比数列定义可得,解得或,经检验均符合条件四、等差等比数列的证明例4:已知数列的首项,求证:数列为等比数列【答案】证明见解析【解析】令,则,递推公式变为,是公比为的等比数列,。

6、精准培优专练1本知识点常以计算题的形式与牛顿运动定律、功能关系、能量守恒综合考查。2两点注意:(1)注意带电粒子重力能否忽略;(2)力电综合问题注意受力分析、运动过程分析,应用动力学知识或功能关系解题。典例1.(2018全国III卷21)如图,一平行板电容器连接在直流电源上,电容器的极板水平;两微粒a、b所带电荷量大小相等、符号相反,使它们分别静止于电容器的上、下极板附近,与极板距离相等。现同时释放a、b,它们由静止开始运动。在随后的某时刻t,a、b经过电容器两极板间下半区域的同一水平面。a、b间的相互作用和重力可忽略。下列。

7、精准培优专练2020届高三好教育精准培优专练培优点六 三角函数一、简单的三角恒等变换例1:( )ABCD【答案】C【解析】二、三角函数的图像例2:将函数的图像上各点向右平移个单位,再把每一点的横坐标缩短到原来的一半,纵坐标保持不变,所得函数图像的一条对称轴方程是( )ABCD【答案】D【解析】向右平移个单位,表达式变为,再每一点的横坐标缩短到原来的一半,则表达式变为,而当时,知所得函数图像的一条对称轴方程是三、三角函数的性质例3:若函数是偶函数,则( )ABCD【答案】C【解析】由是偶函数,可得,即,可得,则,当时,可得。

8、精准培优专练2020届高三好教育精准培优专练培优点十八 圆锥曲线综合一、弦长问题例1:过双曲线的右焦点作倾斜角为的弦,求:(1)弦的中点到点的距离;(2)弦的长【答案】(1);(2)【解析】(1)双曲线的右焦点,直线的方程为联立,得设,则,设弦的中点的坐标为,则,所以(2)由(1),知二、定值问题例2:设抛物线的焦点为,抛物线上的点到轴的距离等于(1)求抛物线的方程;(2)已知经过抛物线的焦点的直线与抛物线交于,两点,证明:为定值【答案】(1);(2)证明见解析【解析】(1)由题意可得,抛物线上点到焦点的距离等于。

9、精准培优专练2020届高三好教育精准培优专练培优点十五 平行垂直的证明一、平行的证明例1:如图,在四棱锥中,底面是平行四边形,点在上,(1)证明:平面;(2)若是中点,点在上,平面,求线段的长【答案】(1)证明见解析;(2)【解析】(1)底面是平行四边形,平面,平面,平面(2)平面,设过且与平面平行的平面与交与点,与交于点,则,又是平行四边形,平面,是中点,是中点,二、垂直的证明例2:如图,在直三棱柱中,点是与的交点,点在线段上,平面(1)求证:;(2)求证:平面【答案】(1)证明见解析;(2)证明见解析【解析。

10、精准培优专练2020届高三好教育精准培优专练培优点四 恒成立问题一、不等式恒成立问题例1:已知,不等式恒成立,则的取值范围为( )ABCD【答案】C【解析】把原不等式的左端看成关于的一次函数,记,则对于任意的恒成立,易知只需,且即可,联立解得或故选C例2:不等式对任意实数恒成立,则实数的取值范围为( )ABCD【答案】A【解析】由绝对值的几何意义易知的最小值为,所以不等式对任意实数恒成立,只需,解得故选A例3:已知,且,若恒成立,则实数的取值范围是( )ABCD【答案】D【解析】,二、函数恒成立问题例4:当时,指数函数恒成。

11、精准培优专练2020届高三好教育精准培优专练培优点八 平面向量一、平面向量的线性运算例1:如图,三个半径为的圆两两外切(,为圆心),且等边的每一边都与其中的两个圆相切,则 【答案】【解析】由题意易得,所以二、平面向量的坐标运算例2:已知对任意平面向量,把绕其起点沿逆时针方向旋转角得到向量,叫做把点绕点逆时针旋转角得到点若平面内点,点,把点绕点顺时针方向旋转后得到点,则点的坐标为( )ABCD【答案】A【解析】,顺时针旋转时,代入得,即,故选A三、平面向量数量积例3:如图在矩形中,点为的中点,点在上,若,则的值是。

12、精准培优专练2020届高三好教育精准培优专练培优点九 线性规划一、求线性目标的最值例1:设变量,满足约束条件,则目标函数的最大值为 【答案】【解析】由约束条件,作出可行域如图,化目标函数为,由图可知,当直线过时,直线在轴上的截距最大,有最大值为二、求非线性目标的最值例2:若满足约束条件,则的取值范围为( )ABCD【答案】A【解析】作出约束条件所表示的的可行域如图:表示区域内的点与点连线的斜率,联立方程组,可解得,同理可得,当直线经过点时,斜率取最小值:;当直线经过点时,斜率取最大值,则的取值范围是,故选A三。

13、精准培优专练2020届高三好教育精准培优专练培优点五 导数的应用一、变化率及导数的概念例1:已知,等于( )ABCD【答案】C【解析】,故选C二、导数的几何意义例2:已知直线与曲线相切,则的值为( )ABCD【答案】B【解析】设切点,则,又,故选B三、导数的图象例3:若函数的导函数的图象如图所示,则的图象可能( )ABCD【答案】C【解析】由,可得有两个零点,且,当或时,即函数为减函数;当时,函数为增函数,即当,函数取得极小值,当,函数取得极大值,故选C四、导数的极值例4:已知函数有两个极值点,则的范围为 【答案】【解析】由。

14、精准培优专练2020届高三好教育精准培优专练培优点十九 几何概型一、与长度有关的几何概型例1:某公司的班车在,发车,小明在至之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过分钟的概率是_【答案】【解析】如图所示,画出时间轴小明到达的时间会随机的落在图中线段中,而当他的到达时间落在线段或上时,才能保证他等车的时间不超过分钟,根据几何概型的概率计算公式可得所求概率为例2:在区间上随机地取一个数,则事件“”发生的概率为_【答案】【解析】由,得,得由几何概型的概率计算公式可得所求概率为二、。

15、精准培优专练培优点十四 现代中国的政治与外交一、高考知识点命题研究典例1(2019年江苏卷,11,3分)1949年10月3日,解放日报发表张乐平的新闻漫画大旗招展全球(见下图),对这幅漫画所含信息理解不正确的是( )A新中国奉行和平外交政策B国民党政权统治已被推翻C人民翻身成为国家的主人D国际社会普遍承认新中国【解析】结合所学知识可知,20世纪40年代末50年代初,世界处于资本主义阵营和社会主义两大阵营对峙时期,而中国属于社会主义阵营的一方,因此国际社会普遍认可新中国的说法是错误的,D选项符合题意。ABC选项说法是符合史实的,。

16、精准培优专练2020届高三好教育精准培优专练培优点十七 离心率一、直接求出,或求出与的比值求解例1:已知椭圆的一个焦点与抛物线的焦点重合,则该椭圆的离心率为( )ABCD【答案】B【解析】由题可得,抛物线的焦点坐标为,所以,所以,所以离心率二、构造,的齐次式求解例2:已知点是双曲线右支上一点,是双曲线的左焦点,且双曲线的一条渐近线恰是线段的中垂线,则该双曲线的离心率是( )ABCD【答案】D【解析】设直线,则与渐近线的交点为,因为是的中点,利用中点坐标公式,得,因为点在双曲线上,所以满足,整理得,解得三、利用离心。

17、精准培优专练2020届高三好教育精准培优专练培优点十二 数列求和一、分组求和法例1:设公差不为的等差数列的前项和为,且,成等比数列(1)求数列的通项公式;(2)设,求数列的前项和【答案】(1);(2)【解析】(1)由题意,可求得,公差为,即,解得(舍)或,所以,(2)二、裂项相消法例2:设数列的前项和为,且,(1)求数列的通项公式;(2)设,求数列的前项和【答案】(1);(2)【解析】(1),是公比为的等比数列,又,解得,是以为首项,公比为的等比数列,通项公式为(2),数列的前项和三、错位相减法例3:在数列中,有,。

18、精准培优专练2020届高三好教育精准培优专练培优点十四 区域如何定位一、宏观判南北半球的判断判断依据南北半球自转方向逆时针北半球顺时针南半球纬度变化纬度值北高南低(自转线速度北小南大)北半球纬度值南高北低(自转线速度北大南小)南半球温度等温线北低南高;1月(2月)气温低;7月(8月)气温高北半球等温线北高南低;1月(2月)气温高;7月(8月)气温低南半球阴阳坡山地北坡为阴坡,南坡为阳坡北半球山地北坡为阳坡,南坡为阴坡南半球中低纬大洋环流中低纬大洋环流呈顺时针流动北半球中低纬大洋环流呈逆时针流动南半球水平运动。

19、精准培优专练2020届高三好教育精准培优专练培优点十四 外接球一、构造正方体与长方体的外接球问题例1:已知直三棱柱的个顶点都在球的球面上,若,则球的半径为( )ABCD二、与正棱锥有关的外接球问题例2:一个正三棱锥的四个顶点都在半径为1的球面上,其中底面的三个顶点在该球的一个大圆上,则该正三棱锥的体积是( )ABCD 三、其他柱体、锥体的外接球问题例3:已知是球的球面上的两点,为该球面上的动点,若三棱锥体积的最大值为,则球的表面积为( )ABCD对点增分集训一、选择题1一个四棱柱的底面是正方形,侧棱与底面垂直,其长度为,。

20、精准培优专练2020届高三好教育精准培优专练培优点十四 外接球一、构造正方体与长方体的外接球问题例1:已知直三棱柱的个顶点都在球的球面上,若,则球的半径为( )ABCD【答案】C【解析】,直三棱柱的底面为直角三角形,把直三棱柱补成长方体,则长方体的体对角线就是球的直径,即球的半径为二、与正棱锥有关的外接球问题例2:一个正三棱锥的四个顶点都在半径为1的球面上,其中底面的三个顶点在该球的一个大圆上,则该正三棱锥的体积是( )ABCD 【答案】C【解析】正三棱锥的四个顶点都在半径为的球面上,且底面的三个顶点在该球的大圆上。

【2020届高三精准培优专练十】相关DOC文档
标签 > 2020届高三精准培优专练十四 外接球文 教师版[编号:140627]