2020届高三精准培优专练六 三角函数理 教师版

精准培优专练 2020届高三好教育精准培优专练 培优点一 函数的图象与性质 一、函数的单调性 例1:对于函数,若,都有,为某一三角形的三条边,则称为“可构造三角形函数”,已知函数(为自然对数的底数)是“可构造三角形函数”,则实数的取值范围是( ) ABCD 【答案】D 【解析】由题意可得:,对,恒成

2020届高三精准培优专练六 三角函数理 教师版Tag内容描述:

1、精准培优专练2020届高三好教育精准培优专练培优点一 函数的图象与性质一、函数的单调性例1:对于函数,若,都有,为某一三角形的三条边,则称为“可构造三角形函数”,已知函数(为自然对数的底数)是“可构造三角形函数”,则实数的取值范围是( )ABCD【答案】D【解析】由题意可得:,对,恒成立,当时,满足条件,当时,在上单调递减,同理:,所以,当时,在上单调递增,同理:,综上可得:实数的取值范围是二、函数的奇偶性和对称性例2:设函数、分别是定义在上的奇函数和偶函数,且,若对,不等式恒成立,则实数的取值范围是( )AB。

2、精准培优专练2020届高三好教育精准培优专练培优点七 解三角形一、正余弦定理的综合应用例1:的内角,的对边分别为,已知,则的最小值为( )ABCD【答案】B【解析】在中,由正弦定理可得,即,又,因为,所以两边平方可得,由,可得,解得,当且仅当时等号成立,又,所以的最小值为故选B二、正余弦定理与三角函数图象性质的综合应用例2:已知函数(1)若,求函数的值域;(2)设的三个内角,所对的边分别为,若为锐角且,求的值【答案】(1);(2)【解析】(1),由,得,即函数的值域为(2)由,得,又由,解得,在中,由余弦定理,解得。

3、精准培优专练2020届高三好教育精准培优专练培优点二 函数零点一、运用零点存在性定理判断函数零点所在区间例1:函数的零点所在的区间为( )ABCD【答案】B【解析】由题意可知原函数是上的增函数,故根据零点存在定理得到零点存在于上,故选B二、函数零点个数的判定例2:已知函数是偶函数,且,当时,则方程在区间上解的个数是( )ABCD【答案】B【解析】函数是上的偶函数,可得,又,可得,故可得,即,即函数的周期是,又时,要研究方程在区间上解的个数,可将问题转化为与在区间有几个交点画出两函数图象如下,由图知两函数图象有个交点。

4、精准培优专练2020届高三好教育精准培优专练培优点六 三角函数一、简单的三角恒等变换例1:( )ABCD二、三角函数的图像例2:将函数的图像上各点向右平移个单位,再把每一点的横坐标缩短到原来的一半,纵坐标保持不变,所得函数图像的一条对称轴方程是( )ABCD三、三角函数的性质例3:若函数是偶函数,则( )ABCD四、三角函数的值域与最值例4:设函数(1)求函数的单调递增区间;(2)当时,的最小值为,求的值对点增分集训一、选择题1函数是( )A最小正周期为的奇函数B最小正周期为的偶函数C最小正周期为的奇函数D最小正周期为的偶函数。

5、精准培优专练2020届高三好教育精准培优专练培优点六 三角函数一、图象平移例1:为了得到函数的图象,只需把函数的图象上所有的点( )A向左平移个单位长度B向右平移个单位长度C向左平移个单位长度D向右平移个单位长度二、根据图象求函数解析式例2:已知函数(其中,)的部分图像如图所示,则函数的解析式为_三、通过三角恒等变换,求目标函数的单调区间及值域例3:设函数,(1)已知,函数是偶函数,求的值;(2)求函数的单调区间及值域对点增分集训一、选择题1已知,则等于( )ABCD2已知角的终边经过点,则( )ABCD3下列不等式中,成。

6、精准培优专练2020届高三好教育精准培优专练培优点六 三角函数一、简单的三角恒等变换例1:( )ABCD【答案】C【解析】二、三角函数的图像例2:将函数的图像上各点向右平移个单位,再把每一点的横坐标缩短到原来的一半,纵坐标保持不变,所得函数图像的一条对称轴方程是( )ABCD【答案】D【解析】向右平移个单位,表达式变为,再每一点的横坐标缩短到原来的一半,则表达式变为,而当时,知所得函数图像的一条对称轴方程是三、三角函数的性质例3:若函数是偶函数,则( )ABCD【答案】C【解析】由是偶函数,可得,即,可得,则,当时,可得。

7、精准培优专练2020届高三好教育精准培优专练培优点六 三角函数一、图象平移例1:为了得到函数的图象,只需把函数的图象上所有的点( )A向左平移个单位长度B向右平移个单位长度C向左平移个单位长度D向右平移个单位长度【答案】D【解析】根据题意,故只需把函数的图象上所有的点,向右平移个单位长度,可得到函数的图象,故答案为D二、根据图象求函数解析式例2:已知函数(其中,)的部分图像如图所示,则函数的解析式为_【答案】【解析】由函数图象可知,又,所以,因为函数图象过点,代入解析式可知,因为,所以,所以函数解析式为三、通。

标签 > 2020届高三精准培优专练六 三角函数理 教师版[编号:104301]