3.1 数系的扩充和复数的概念3.1.1 数系的扩充和复数的概念1.了解引进虚数单位 i 的必要性,了解数系的扩充过程. 2.理解在数系的扩充中由实数集扩展到复数集出现的一些基本概念. 3.掌握复数代数形式的表示方法,理解复数相等的充要条件.1.复数的有关概念(1)复数定义:形如 abi(a,b R
2019人教A版数学选修2-2学案1.5.3定积分的概念Tag内容描述:
1、3.1 数系的扩充和复数的概念3.1.1 数系的扩充和复数的概念1.了解引进虚数单位 i 的必要性,了解数系的扩充过程. 2.理解在数系的扩充中由实数集扩展到复数集出现的一些基本概念. 3.掌握复数代数形式的表示方法,理解复数相等的充要条件.1.复数的有关概念(1)复数定义:形如 abi(a,b R)的数叫做复数,其中 i 叫做虚数单位,满足 i21.表示方法:复数通常用字母 z 表示,即 zabi(a,bR) ,这一表示形式叫做复数的代数形式.a 叫做复数 z 的实部,b 叫做复数 z 的虚部.(2)复数集定义:全体复数所成的集合叫做复数集.表示:通常用大写字。
2、11 变化率与导数11.1 变化率问题11.2 导数的概念1.了解导数概念的实际背景 2.会求函数从 x1 到 x2 的平均变化率3会利用导数的定义求函数在某点处的导数1平均变化率函数 yf(x) 从 x1 到 x2 的平均变化率(1)定义式: . y x f(x2) f(x1)x2 x1(2)实质:函数值的改变量与自变量的改变量之比(3)作用:刻画函数值在区间 x1,x 2上变化的快慢(4)几何意义:已知 P1(x1,f( x1),P 2(x2,f(x 2)是函数 yf( x)的图象上两点,则平均变化率 表示割线 P1P2 的斜率 y x f(x2) f(x1)x2 x12瞬时变化率函数 yf(x) 在 xx 0 处的瞬时变化率(1)定义式:。
3、17 定积分的简单应用17.1 定积分在几何中的应用17.2 定积分在物理中的应用1.应用定积分求平面图形的面积、变速直线运动的路程及变力做功2将实际问题抽象为定积分的数学模型,然后应用定积分的性质来求解1定积分与平面图形面积的关系(1)已知函数 f(x)在 a,b上是连续函数,由直线 y0,xa,xb 与曲线 yf(x)围成的曲边梯形的面积为 S,填表:f(x)的符号 平面图形的面积与定积分的关系f(x)0S f(x)dxba续 表f(x)的符号 平面图形的面积与定积分的关系f(x)g(x),那么直线 xa,xb与曲线 yf(x) , yg(x )围成的平面图形的面积为 S f(x)g( x)dxba2定。
4、1.5.3 定积分的概念,第一章 1.5 定积分的概念,学习目标 1.了解定积分的概念,会用定义求定积分. 2.理解定积分的几何意义. 3.掌握定积分的基本性质.,题型探究,问题导学,内容索引,当堂训练,问题导学,知识点一 定积分的概念,思考,答案,答案 两个问题均可以通过“分割、近似代替、求和、取极限”解决,都可以归结为一个特定形式和的极限.,分析求曲边梯形的面积和变速直线运动的路程,找一下它们的共同点.,梳理,常数,常数,这里,a与b分别叫做 与 ,区间a,b叫做 ,函数f(x)叫做 ,x叫做 ,f(x)dx叫做 .,积分下限,积分上限,积分区间,被积函数,积。
5、15.3 定积分的概念1.了解定积分的概念,会用定义求定积分 2.理解定积分的几何意义 3.掌握定积分的基本性质1定积分的概念如果函数 f(x)在区间a,b上连续,用分点 ax 00 时,f(|x|)f (x),故 f(|x|)dx2 f(|x|)dx2 f(x)dx16.6 66060利用定积分的性质求定积分的方法(1)如果被积函数是几个简单函数的和的形式,利用定积分的运算性质进行计算,可以简化计算(2)如果被积函数含有绝对值或被积函数为分段函数,一般利用积分区间的连续可加性计算(3)如果函数具有奇偶性,应借助图象的对称关系及定积分的几何意义求值 1.若 f(x)dx2, f(x)dx3,则 2f(。