2.4 二元一次方程组的应用(一)A 组1根据以下对话,可以求得小红所买的笔和笔记本的价格分别是(D)(第 1 题)A. 0.8 元支,2.6 元本B. 0.8 元支,3.6 元本C. 1.2 元支,2.6 元本D. 1.2 元支,3.6 元本2端午节前夕,某超市用 1680 元购进 A, B 两种
2019年浙教版七年级数学下册5.3分式的乘除同步练习含答案Tag内容描述:
1、2.4 二元一次方程组的应用(一)A 组1根据以下对话,可以求得小红所买的笔和笔记本的价格分别是(D)(第 1 题)A. 0.8 元/支,2.6 元/本B. 0.8 元/支,3.6 元/本C. 1.2 元/支,2.6 元/本D. 1.2 元/支,3.6 元/本2端午节前夕,某超市用 1680 元购进 A, B 两种商品共 60 件,其中 A 型商品每件 24元, B 型商品每件 36 元设购买 A 型商品 x 件, B 型商品 y 件,则可列方程组为(B)A. B. x y 60,36x 24y 1680) x y 60,24x 36y 1680)C. D. 36x 24y 60,x y 1680 ) 24x 36y 60,x y 1680 )3某单位组织 34 人分别到 A 地和 B 地旅游,到 A 地的人。
2、2.4 二元一次方程组的应用(二)A 组1小明到商店购买“五四青年节”活动奖品,购买 20 支铅笔和 10 本笔记本共需 110元,但购买 30 支铅笔和 5 本笔记本只需 85 元,设每支铅笔 x 元,每本笔记本 y 元,则可列方程组(B)A. B. 20x 30y 11010x 5y 85) 20x 10y 110,30x 5y 85 )C. D. 20x 5y 110,30x 10y 85) 5x 20y 110,10x 30y 85)(第 2 题)2如图为某商店的宣传单,小胜到此店同时购买了一件标价为 x 元的衣服和一条标价为 y 元的裤子,共节省 500 元,则根据题意所列方程正确的是(A)A. 0.6x0.4 y100500B. 0.6x0.4 y100500C. 0.4x0.6 y1005。
3、3.6 同底数幂的除法(二)A组1一种花瓣的花粉颗粒直径约为 0.0000065 m,0.0000065 用科学记数法表示为(B)A. 6.5105 B. 6.510 6C. 6.5107 D. 6.510 82计算|8| 的结果是(B)(12)0 A. 7 B. 7 C. 7.5 D. 93计算 3231 的结果是(A)A. 3 B. 3 C. 2 D. 24计算:2 0 _3_(12) 1 5用小数表示下列各数(1)2.5102 . (2)1.610 5 .【解】 (1)原式0.025.(2)原式0.000016.6用科学记数法表示下列各数(1)0.0000104. (2)0.000245.【解】 (1)0.00001041.0410 5 .(2)0.0002452.4510 4 .7计算:(1)103 (5) 0.【解】 原式0.00。
4、3.6 同底数幂的除法(一)A组1下列运算正确的是(C)A. a2a3 a6 B. 2 a3 b5 abC. a8a2 a6 D. ( a2b)2 a4b2计算: a3a_ a2_3计算:(4) 6(4) 3_64_4计算:(1)a10a2.【解】 原式 a102 a8.(2)( t)4( t)【解】 原式( t)3 t3.(3)( xy)5( xy)3.【解】 原式( xy)2 x2y2.(4)m5( m)2.【解】 原式 m5m2 m3.(5)(y2)3y3.【解】 原式 y6y3 y3.(6)(x y)7(x y)5.【解】 原式( x y)2 x22 xy y2.5计算:(1)( a)7a3( a)2( a2)3.【解】 原式 a7a3a2( a6。
5、3.1 同底数幂的乘法(三)A组1计算(2x 2y)3的结果是(D)A. 2x5y3 B. 2 x6yC. 2x6y3 D. 8 x6y32下列等式错误的是(D)A. (2mn)24 m2n2B. (2 mn)24 m2n2C. (2m2n2)38 m6n6D. (2 m2n2)38 m5n53计算 aa5(2 a3)2的结果为(D)A. a62 a5 B. a6C. a64 a5 D. 3 a64直接写出结果:(1)(2a)3_8 a3_(2)(3104)32.710 13(3)(3 b2c)327 b6c3(4)(2 a2b3c)416 a8b12c4(5)( t)3(2 t)24 t5(6)(a b)53(b a)72( a b)295填空:(1)(2 a2)38 a6.(2) x3y9(23xy3)3 827(3) (2) 200_1_(12)200 (4) (23。
6、6.1 数据的收集与整理(二)A 组1要调查某校学生周日的学习时间,下列调查对象中最合适的是(D)A. 选取一个班级的学生B. 选取 50 名男生C. 选取 50 名女生D. 在该校各年级随机选取 50 名学生2为了了解某市参加中考的 25000 名学生的身高状况,抽查了其中 1200 名学生的身高进行统计分析,下面叙述正确的是(B)A. 25000 名学生是总体B. 被抽查的 1200 名学生的身高是总体的一个样本C. 每名学生是总体的一个个体D. 采用的是全面调查3为了了解某市 2017 年中考数学各分数段成绩分布情况,从中抽取 150 名考生的成绩进行统计分析在这个问题中,样。
7、6.1 数据的收集与整理(一)A 组1小芳想调查某校七年级(3)班全体女生星期日的睡眠状况,则该调查的调查范围是(A)A. 七年级(3)班全体女生B. 该校全体女生C. 七年级(3)班全体学生D. 该校全体学生2某区从参加数学教学质量检测的 8000 名学生中,随机抽取了部分学生的成绩作为研究对象,结果如下表所示:分数段(分) 060 6172 7384 8596 97108 109120人数 3 6 36 50 13所占比例 20% 40%等级 C B A(1)被抽取的学生有(C)A. 100 人 B. 108 人C. 180 人 D. 200 人(2)等级为 A 的学生人数占被抽取学生总人数的百分比为(A)A. 35% B. 36%C. 40% D. 50%3。
8、3.1 同底数幂的乘法(一)A 组1下列计算正确的是(B)A. 2a5a10 a B. 2 xx2 x2C. 3aa3 a D. x2x3 x62计算 a3a2的结果是(B)A. a B. a5C. a6 D. a93填空:(1)a2a4_ a6_(2)x2x5_ x7_(3)(4) 2(4) 3_4 5_(4) a( a2)_ a3_(5)(b a)3(a b)2( b a)5或( a b)5(6)x3x3x x7.4若 am2, an8,则 am n_16_5计算:(1)CC11.【解】 原式 C111 C12.(2) b3b2.【解】 原式 b32 b5.(3)( b)3( b2)【解】 原式( b3)( b2) b3b2 b32 。
9、3.5 整式的化简A 组1化简(m 2n 2)(mn)(mn)的结果是(B)A. 2 m2 B. 0C. 2m2 D. 2 m22 n22化简( a b)(a b) b(b2)的结果是(C)A. a2 b B. a22C. a22 b D. 2 b3化简( a2) 2 a(5 a)的结果是(A)A. a4 B. 3 a4C. 5a4 D. a244当 a3, b 时,( a b)2( a b)(a b)2 a2_2_135若( x1)( x2) x2 px q,则 p_1_, q_2_6已知 m n mn,则( m1)( n1)_1_7化简:(1)(x y)(x y)( x2 y)(2x y)【解】 原式 x2 y2(2 x2 xy4 xy2 y2) x2 y22 x23 xy2 y2 x23 xy y2.(2) x(3x2)(2 x1) 2.【解】 原式3 x22 x4 x24。
10、3.3 多项式的乘法(二)A组1计算(x3)(3x4)的结果是 3x25x122计算(mn)(m 2mnn 2)的结果是(B)A. m3 n2 B. m3 n3C. m32 mn n3 D. m32 mn n33计算(2 x24) 的结果是(D)(2x 132x)A. x22 B. x34C. x34 x4 D. x32 x22 x44若长方形的长为(4 a22 a1),宽为(2 a1),则这个长方形的面积为(D)A. 8a24 a22 a1 B. 8 a34 a22 a1C. 8a31 D. 8 a315有三个连续整数,中间的数为 n,则它们的积为(D)A. n31 B. n34 nC. 4n3 n D. n3 n6计算:(1)(2x1)(2 x2)【解】 原式4 x2 x32 x22 x3 x24 x2.(2)(x y)(x2 y2)【解】 原式 x3 xy2 x2y y3.(3)(a21)( a25)【解】 原。
11、3.3 多项式的乘法(一)A 组1计算(ab)(2a3b)的结果是(C)A. 2a23 b2 B. 2 a ab3 b2C. 2a2 ab3 b2 D. 2 a2 ab3 b22下列式子化简后结果为 a23 a18 的是(D)A. (a2)( a9) B. ( a2)( a9)C. (a6)( a3) D. ( a6)( a3)3若关于 x 的多项式( x m)与( x7)的积的常数项为 14,则 m 的值是(B)A. 2 B. 2 C. 7 D. 74若( x2)( x1) x2 mx n,则 m n(C)A. 1 B. 2 C. 1 D. 25若三角形的一边长为 2a4,这条边上的高为 2a1,则三角形的面积为(B)A. 4a26 a4 B. 2 a23 a2C. 4a210 a4 D. 4 a210 a46计算( x1)( x2)的结果是_ x2 x2_7计算:(1)(a b)(a b)【解】 原式 a2。
12、第 5 章 分式51 分式知识点 1 分式的概念如果 A,B 表示两个整式,并且 B 中含有字母,那么式子 就是分式分式 中,A 叫做AB AB分子,B 叫做分母注意 判断一个式子是不是分式,不能把原式变形(如约分),而只能根据其原始形式判断如 是分式 是圆周率,是一个常数,不能看成字母x2x1下列各式中,哪些是整式?哪些是分式?(1) ;(2) ;(3) ;1x x2 2xyx y(4) ;(5) (x21)2x x3 14知识点 2 分式有意义的条件(1)分式 有意义的条件:分母不为零,即当 B0 时,分式 有意义AB AB(2)分式 无意义的条件:分母为零,即当 B0 时,分式 无意义AB AB2. 当。
13、5.5 分式方程(一)A 组1方程 1 的解是_x3_2x 12分式方程 的解是_x1_2x 13 x 323分式方程 1 的解是(D)2x 1 2xx 1A. x1 B. x3C. x D. 无解124定义新运算“”如下: a b ,则方程 x(2) 1 的解是(B)1a b2 2x 4A. x4 B. x5C. x6 D. x75如果解关于 x 的分式方程 1 时出现增根,那么 m 的值为(D)mx 2 2x2 xA. 2 B. 2 C. 4 D. 46解下列分式方程:(1) 0.3x 1 x 3x2 1【解】 方程两边同乘( x1)( x1),得3x3 x30,解得 x0.经检验, x0 是原方程的根,原方程的解为 x0.(2) .1x 1 2x 1 4x2 1【解】 方程两边同乘( x1)( x1),得x12( x1)4,解得 x1.经检验。
14、5.5 分式方程(二)A 组1某校美术社团为练习素描,他们第一次用 120 元买了若干本资料,第二次用 240 元在同一商家买同样的资料,这次商家每本优惠 4 元,结果比上次多买了 20 本,求第一次买了多少本资料?若设第一次买了 x 本资料,则可列方程为(D)A. 4 B. 4240x 20 120x 240x 20 120xC. 4 D. 4120x 240x 20 120x 240x 202若相邻两个正偶数的比是 2425,则这两个偶数之间的奇数为_49_3甲、乙两人做某种机械零件,已知甲每小时比乙多做 6 个,甲做 90 个所用的时间与乙做 60 个所用的时间相等,求甲、乙每小时各做多少个零件如果设乙每小时。
15、5.2 分式的基本性质A 组1下列各式变形正确的是(C)A. B. x y x y x yx y x y x y x yx yC. D. x y x y x yx y x y x y x yx y2下列等式中,正确的是(A)A. B. ab 2a2b ab a 1b 1C. D. ab a 1b 1 ab a2b23分式 可变形为(D)11 xA. B. 1x 1 11 xC. D. 11 x 1x 14下列各式变形正确的是(C)A. B. a2 0.2aa2 0.3a3 a2 2aa2 3a3 x 1x y x 1x yC. D. a b1 12aa 13 6 3a6a 2 b2 a2a b5若分式 中的 a, b 的值同时扩大到原来的 3 倍,则分式的值(B)2aba bA. 不变 B. 是原来的 3 倍C. 是原来的 6 倍 D. 是原来的 9 倍。
16、5.4 分式的加减(一)A 组1计算 的结果是(A)aa 1 1a 1A. 1 B. aC. a1 D. 1a 12下列等式成立的是(C)A. B. 1a 2b 3a b 22a b 1a bC. D. abab b2 aa b a a b aa b3计算:(1) _2_x yx x yx(2) _1_xx 1 1x 1(3) _ x1_x2x 1 1x 14化简 的结果是_1_2xx 1 1 xx 15计算:(1) .x2x 2 4x2 x 4x 2【解】 原式x2 4x 4x 2 x2.( x 2) 2x 2(2) .2a 3ba b 2b aa b 3b ab a【解】 原式 2a 3bb a a 2bb a 3b ab a( 2a 3b) ( a 2b) ( 3b a)b a 2.2a 2bb a 2( a b)b a(3。
17、5.4 分式的加减(二)A 组1化简 的结果是(A)x2x 1 11 xA. x1 B. x1C. x21 D. x2 1x 12已知 5, 7,则 的值为(B)1x 2y 3z 3x 2y 1z 1x 1y 1zA. 2 B. 3C. 12 D. 不能确定3化简 ( a1)的结果是(A)a2a 1A. B. 1a 1 1a 1C. D. 2a 1a 1 2a 1a 14计算:(1) .m 15m2 9 23 m【解】 原式 m 15( m 3) ( m 3) 2m 3m 15 2( m 3)( m 3) ( m 3)3m 9( m 3) ( m 3) .3( m 3)( m 3) ( m 3) 3m 3(2) .a2 b2ab ab b2ab a2【解】 原式 a2 b2ab b( a b)a( a b) a2 b2ab b2aba2ab .ab(3) .(3a 2 a 2)。
18、5.1 分式A 组1下列各式中,是分式的是(D)A. B. 2 x12C. D. x 2x2要使分式 有意义, x 应满足的条件是(D)4x 3A. x3 B. x3C. x0,a b2 2aba b ( a b) 2 4ab2( a b) ( a b) 22( a b)小丽两次所购买商品的平均价格高数学乐园13若 abc0,试求代数式 的所有可能的值|a|a b|b| |c|c abc|abc|【解】 分四种情况讨论:当 a0, b0, c0 时, 4.|a|a b|b| |c|c abc|abc| aa bb cc abcabc当 a0, b0, c0,则 |a|a b|b| |c|c abc|abc| aa 0.b b cc abcabc综上所述,所求代数式的值为4 或 0.。
19、5.3 分式的乘除知识点 1 分式的乘除法运算分式乘分式,用分子的积做积的分子,分母的积做积的分母,即 .ab cd acbd分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘,即 .ab cd ab dc adbc1(1) _;x2y 3ab ( ) ( )( ) ( )(2) _;x23y 6yx ( ) ( )( ) ( )(3)计算 时,先把除法运算转化为乘法运算,得_,计算该乘法算式得abc2 a2c3_知识点 2 分式的乘方运算分式的乘方法则:分式的乘方是把分子、分母各自乘方,即 .(ab)n anbn2. 计算:(1) ;(2a2b c3)3 (2) (ab 4)(ab)2 ( ba)3 探究 一 分式的乘法运算计算:(1)3。