2019年高考数学解密题含解析之三角恒等变换

正、余弦定理及解三角形高考考点 命题分析 三年高考探源 考查频率利用正、余弦定理解三角形2018 课标全国172018 课标全国62018 课标全国92017 课标全国172016 课标全国8解三角形的实际应用2015 湖北 13 解三角形与其他知识的交汇问题解三角形问题一直是近几年高考的重点,主

2019年高考数学解密题含解析之三角恒等变换Tag内容描述:

1、 正、余弦定理及解三角形高考考点 命题分析 三年高考探源 考查频率利用正、余弦定理解三角形2018 课标全国172018 课标全国62018 课标全国92017 课标全国172016 课标全国8解三角形的实际应用2015 湖北 13 解三角形与其他知识的交汇问题解三角形问题一直是近几年高考的重点,主要考查以斜三角形为背景求三角形的基本量、面积或判断三角形的形状,解三角形与平面向量、不等式、三角函数性质、三角恒等变换交汇命题成为高考的热点2017 课标全国172016 课标全国17考点 1 利用正、余弦定理解三角形题组一 利用正、余弦定理解三角形调研 1 在 中。

2、 三角函数的图象与性质高考考点 命题分析 三年高考探源 考查频率三角函数的定义、同角三角函数的基本关系式和诱导公式2016 课标全国 5 三角函数的图象2017 课标全国 92016 课标全国 7三角函数的性质三角函数的考查重点是三角函数的定义、图象与性质,考查中以图象的变换、函数的单调性、奇偶性、周期性、对称性、最值作为热点,并常与三角恒等变换交汇命题,难度为中档偏下.2018 课标全国 102018 课标全国 152017 课标全国 62016 课标全国 12考点 1 三角函数的定义、同角三角函数的基本关系式和诱导公式题组一 利用三角函数的定义求三角函。

3、三角恒等变换与解三角形(1)两角和(差)的正弦、余弦及正切是 C 级要求,二倍角的正弦、余弦及正切是 B 级要求,应用时要适当选择公式,灵活应用(2)正弦定理、余弦定理及其应用,要求是 B 级,能够应用定理实现三角形中边和角的转化,以及应用定理解决实际问题试题类型一般是填空题,同时在解答题中与三角函数、向量等综合考查,构成中档题.【重点、难点剖析】来源:ZXXK1两角和与差 的正弦、余弦、正切公式(1)sin()sin cos cos sin .(2)cos()cos cos sin sin .来源:Z。xx。k.Com(3)tan() .tan tan 1tan tan 2二倍角的正弦、余弦、正切公 式(。

4、三角恒等变换跟踪知识梳理考纲解读:1.会用向量的数量积推导出两角差的余弦公式.2.能利用两角差的余弦公式导出两角差的正弦、正切公式.3.能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系.4.能运用上述公式进行简单的恒等 变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆)考点梳理:1. 两角和与差的三角函数公式的应用两角和与差的正弦、余弦、正切公式C() : cos()coscos sin sin;C() : cos()coscos_ si n_sin;S() :sin()sincoscos sin;S()。

5、 三角恒等变换高考考点 命题分析 三年高考探源 考查频率利用两角和与差的公式与二倍角公式化简求值2018 课标全国152018 课标全国42016 课标全国9三角恒等变换的综合应用单独考查三角变换的题目较少,往往以解三角形为背景,在应用正弦定理、余弦定理的同时,应用三角恒等变换进行化简,综合性比较强,但难度不大.也可能与三角函数等其他知识相结合.2017 课标全国172016 课标全国132016 课标全国17考点 1 利用两角和与差的公式与二倍角公式化简求值题组一 利用两角和与差的正、余弦公式化简求值调研 1 若 ,且 ,则 的值为31cos22sin2A B 49。

标签 > 2019年高考数学解密题含解析之三角恒等变换[编号:143403]