解三角形跟踪知识梳理考纲解读:1.会用向量的数量积推导出两角差的余弦公式.2.能利用两角差的余弦公式导出两角差的正弦、正切公式.3.能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦 、余弦、正切公式 ,了解它们的内在联系.4.能运用上述公式进行简单的恒等变换(包括导 出积化和
2019年高考数学含解析之三角恒等变换跟踪知识梳理Tag内容描述:
1、解三角形跟踪知识梳理考纲解读:1.会用向量的数量积推导出两角差的余弦公式.2.能利用两角差的余弦公式导出两角差的正弦、正切公式.3.能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦 、余弦、正切公式 ,了解它们的内在联系.4.能运用上述公式进行简单的恒等变换(包括导 出积化和差、和差化积、半角公式,但对这三组公式不要求记忆)考点梳理:掌握正弦定理、余弦定理及其应用。1.测量距离问题;2.测量高度问题;3.测量角度问题.4.主要是利用定理等知识和方法解决一些与测量和几何计算有关的问题,关键是弄懂。
2、三角恒等变换与解三角形(1)两角和(差)的正弦、余弦及正切是 C 级要求,二倍角的正弦、余弦及正切是 B 级要求,应用时要适当选择公式,灵活应用(2)正弦定理、余弦定理及其应用,要求是 B 级,能够应用定理实现三角形中边和角的转化,以及应用定理解决实际问题试题类型一般是填空题,同时在解答题中与三角函数、向量等综合考查,构成中档题.【重点、难点剖析】来源:ZXXK1两角和与差 的正弦、余弦、正切公式(1)sin()sin cos cos sin .(2)cos()cos cos sin sin .来源:Z。xx。k.Com(3)tan() .tan tan 1tan tan 2二倍角的正弦、余弦、正切公 式(。
3、三角函数的图象与性质跟踪知识梳理考纲解读:1.能画出 xyxytancossin, 的图像;2.了解三角函数的周期性.理解正弦函数、余弦函数在区间 02, 的性质(如 单调性、最大值和最小值以及与 x 轴交点等),理解正切函数在区间( ,)的单调性.考点梳理:1正弦、余弦、正切函数的图象与性质(1)正弦函数 sinyx,余弦函数 cosyx,正切函数 tanyx的图象与性质性质i tanyx图象定义域RR,2xkZ值域1,1,R最值当2xkZ时,max1y;当 2k时,miny当 2xkZ时,ma1y;当 xk时,miny既无最大值,也无最小值周期性22奇偶性sinsix,奇函数 cossx偶函数 tantax奇函数。
4、 三角恒等变换高考考点 命题分析 三年高考探源 考查频率利用两角和与差的公式与二倍角公式化简求值2018 课标全国152018 课标全国42016 课标全国9三角恒等变换的综合应用单独考查三角变换的题目较少,往往以解三角形为背景,在应用正弦定理、余弦定理的同时,应用三角恒等变换进行化简,综合性比较强,但难度不大.也可能与三角函数等其他知识相结合.2017 课标全国172016 课标全国132016 课标全国17考点 1 利用两角和与差的公式与二倍角公式化简求值题组一 利用两角和与差的正、余弦公式化简求值调研 1 若 ,且 ,则 的值为31cos22sin2A B 49。
5、三角恒等变换跟踪知识梳理考纲解读:1.会用向量的数量积推导出两角差的余弦公式.2.能利用两角差的余弦公式导出两角差的正弦、正切公式.3.能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系.4.能运用上述公式进行简单的恒等 变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆)考点梳理:1. 两角和与差的三角函数公式的应用两角和与差的正弦、余弦、正切公式C() : cos()coscos sin sin;C() : cos()coscos_ si n_sin;S() :sin()sincoscos sin;S()。