2.4.2抛物线的几何性质 学案含答案

第二课时第二课时 抛物线的方程及性质的应用抛物线的方程及性质的应用 课标要求 素养要求 1.了解抛物线的简单应用. 2.运用抛物线的方程及简单几何性质, 解决与抛物线有关的问题. 通过本节课进一步提升逻辑推理及数学 运算素养. 自主梳理 1,3.3.2 抛物线的简单几何性质抛物线的简单几何性质 第一

2.4.2抛物线的几何性质 学案含答案Tag内容描述:

1、第二课时第二课时 抛物线的方程及性质的应用抛物线的方程及性质的应用 课标要求 素养要求 1.了解抛物线的简单应用. 2.运用抛物线的方程及简单几何性质, 解决与抛物线有关的问题. 通过本节课进一步提升逻辑推理及数学 运算素养. 自主梳理 1。

2、3.3.2 抛物线的简单几何性质抛物线的简单几何性质 第一课时第一课时 抛物线的简单几何性质抛物线的简单几何性质 课标要求 素养要求 1.了解抛物线的简单几何性质. 2.会利用抛物线的性质解决一些简单的 抛物线问题. 通过研究抛物线的几何性。

3、242 抛物线的简单几何性质1了解抛物线的范围、对称性、顶点、焦点、准线等几何性质 2会利用抛物线的性质解决一些简单的抛物线问题抛物线的简单几何性质标准方程 y22px(p0) y22px( p 0) x22py(p0) x22py( p 0)图形范围 x0,yR x0,yR y0,xR y0,xR焦点 (p2,0) ( p2,0) (0,p2) (0, p2)准线方程xp2xp2yp2yp2对称轴 x 轴 y 轴顶点 (0,0)离心率 e1抛物线与椭圆、双曲线几何性质的差异(1)它们都是轴对称图形,但椭圆和双曲线又是中心对称图形;(2)顶点个数不同,椭圆有 4 个顶点,双曲线有 2 个顶点,抛物线只有 1 个顶点;(3)焦点个数不。

4、2.4.2 抛物线的几何性质(二)学习目标:1.掌握直线与抛物线位置关系的判断.2.掌握直线与抛物线相交时与弦长相关的知识.3.掌握直线与抛物线相关的求值、证明问题自 主 预 习探 新 知1直线与抛物线的位置关系及判定位置关系 公共点 判定方法相交 有两个或一个公共点 k 0 或Error!相切 有且只有一个公共点 0相离 无公共点 0联立直线与抛物线方程,得到一个一元二次方程,记判别式为基础自测1思考辨析(1)经过抛物线上一点有且只有一条直线与抛物线有一个公共点( )(2)过抛物线内一点只有一条直线与抛物线有且只有一个公共点( )(3)过点(0,1)作直。

5、2.4.2 抛物线的几何性质( 一)学习目标:1.了解抛物线的范围、对称性、顶点、焦点、准线等几何性质( 重点 )2.会利用抛物线的性质解决一些简单的抛物线问题(重点、难点)自 主 预 习探 新 知1抛物线的几何性质标准方程y22px(p0)y22px(p0)x22py(p0)x22py(p0)图形范围 x 0,yR x 0,yR xR,y0xR,y0对称轴x 轴 y 轴顶点 (0,0)性质离心率e1思考:参数 p 对抛物线开口大小有何影响?提示 参数 p(p0)对抛物线开口大小有影响,因为过抛物线的焦点 F 且垂直于对称轴的弦的长度是 2p,所以 p 越大,开口越大2焦点弦设过抛物线焦点的弦的端点为 A(x1,。

6、2.4.2抛物线的几何性质一、选择题1设抛物线的焦点到顶点的距离为3,则抛物线上的点到准线的距离的取值范围是()A(6,) B6,)C(3,) D3,)答案D解析抛物线的焦点到顶点的距离为3,3,即p6.又抛物线上的点到准线距离的最小值为,抛物线上的点到准线距离的取值范围是3,)2若抛物线y24x上一点P到x轴的距离为2,则点P到抛物线的焦点F的距离为()A4 B5 C6 D7答案A解析由题意,知抛物线y24x的准线方程为x1,抛物线y24x上一点P到x轴的距离为2,则P(3,2),点P到抛物线的准线的距离为314,点P到抛物线的焦点F的距离为4.故选A.3P为抛物线y22px的焦点弦。

7、2.4.2抛物线的几何性质学习目标1.了解抛物线的范围、对称性、顶点、焦点、准线等几何性质.2.会利用抛物线的性质解决一些简单的抛物线问题知识点一抛物线的几何性质思考1类比椭圆、双曲线的几何性质,结合图象,你能说出抛物线y22px(p0)的范围、对称性、顶点坐标吗?答案范围x0,关于x轴对称,顶点坐标(0,0)思考2抛物线标准方程y22px(p0)中的参数p对抛物线开口大小有何影响?答案p越大,开口越大梳理标准方程y22px(p0)y22px(p0)x22py(p0)x22py(p0)图形性质范围x0,yRx0,yRxR,y0xR,y0对称轴x轴y轴顶点(0,0)离心率e1知识点二焦点弦设过抛。

标签 > 2.4.2抛物线的几何性质 学案含答案[编号:128098]