1.3.1正弦函数的图象与性质(二) 一、选择题 1.下列函数中,周期为2的是() A.ysin B.ysin 2x C.y D.y|sin x| 答案C 解析画出y的图象(图略),易知其周期为2. 2.下列函数中,不是周期函数的是() A.ysin x1 B.ysin2x C.y|sin x| D
1.4.2 正弦函数余弦函数的性质二课时对点习含答案Tag内容描述:
1、1.3.1正弦函数的图象与性质(二)一、选择题1.下列函数中,周期为2的是()A.ysin B.ysin 2xC.y D.y|sin x|答案C解析画出y的图象(图略),易知其周期为2.2.下列函数中,不是周期函数的是()A.ysin x1 B.ysin2xC.y|sin x| D.ysin |x|答案D解析画出ysin |x|的图象(图略),易知D的图象不具有周期性.3.函数f(x)是()A.奇函数 B.偶函数C.既是奇函数又是偶函数 D.非奇非偶函数答案B解析函数f(x)的定义域为(,0)(0,),关于原点对称,且f(x)f(x),故f(x)为偶函数.4.函数f(x)sin的最小正周期为,其中0,则等于()A.5 B.10 C.15 D.20答案B5.已知aR,函数f(x。
2、1.3.2余弦函数、正切函数的图象与性质(二)一、选择题1.函数f(x)2tan(x)是()A.奇函数B.偶函数C.奇函数,也是偶函数D.非奇非偶函数答案A解析因为f(x)2tan x2tan(x)f(x),且f(x)的定义域关于原点对称,所以函数f(x)2tan(x)是奇函数.2.下列各点中,不是函数ytan图象的对称中心的是()A. B.C. D.答案C解析令2x,kZ,得x(kZ).令k0,得x;令k1,得x;令k2,得x.故选C.3.满足tan A1的三角形的内角A的取值范围是()A. B.C. D.答案D解析因为A为三角形的内角,所以01,结合正切曲线得A.4.已知函数f(x)tan x (0)图象的相邻两支截直线y所得的线段长为,则。
3、1.3.2三角函数的图象与性质第1课时正弦函数、余弦函数的图象与性质一、选择题1符合以下三个条件:在上单调递减;以2为周期;是奇函数这样的函数是()Aysin x Bysin xCycos x Dycos x考点正弦、余弦函数性质的综合应用题点正弦、余弦函数性质的综合应用答案B解析在上单调递减,可以排除A,是奇函数可以排除C,D.2对于函数f(x)sin 2x,下列选项中正确的是()Af(x)在上是递增的Bf(x)的图象关于原点对称Cf(x)的最小正周期为2Df(x)的最大值为2考点正弦、余弦函数性质的综合应用题点正弦函数性质的综合应用答案B解析因为函数ysin x在上是递减的,。
4、第第 3 3 课时课时 正弦函数正弦函数余弦函数的性质的综合问题余弦函数的性质的综合问题 课时对点练课时对点练 1下列函数中,最小正周期为 ,且图象关于直线 x3对称的函数是 Ay2sin2x3 By2sin2x6 Cy2sinx23 Dy。
5、4.3单位圆与正弦函数、余弦函数的基本性质一、选择题1函数y的定义域是()A.(kZ)B.(kZ)C.(kZ)D2k,(2k1)(kZ)答案B解析由已知,得2kx2k(kZ)2函数ysin 2x的递减区间是()A.(kZ)B.(kZ)C.(kZ)D.(kZ)答案B解析由2k2x2k,kZ,得kxk,kZ,ysin 2x的递减区间是(kZ)3函数ylg的定义域为()A.B.,kZC.,kZDR答案C解析cos x0,cos x,2kx2k,kZ.函数ylg的定义域为,kZ.4函数y4sin x3在,上的递增区间为()A. B.C. D.答案B解析ysin x的递增区间就是y4sin x3的递增区间5y3cos x,x的最大。
6、1.4.2 正弦函数、余弦函数的性质正弦函数、余弦函数的性质(二二) 基础过关 1函数 ysin 2x 的单调减区间是( ) A 22k, 3 22k (kZ) B k 4,k 3 4 (kZ) C2k,32k (kZ) D k 4,k 4 (kZ) 解析 令 22k2x 3 2 2k,kZ, 得 4kx 3 4 k,kZ, 则 ysin 2x 的单减区间是 4k, 3 4 k(kZ) 答。
7、 1.4 三角函数的图象与性质三角函数的图象与性质 14.1 正弦函数正弦函数、余弦函数的图象余弦函数的图象 一、选择题 1以下对正弦函数 ysin x 的图象描述不正确的是( ) A在 x2k,2(k1)(kZ)上的图象形状相同,只是位置不同 B介于直线 y1 与直线 y1 之间 C关于 x 轴对称 D与 y 轴仅有一个交点 考点 正弦函数的图象 题点 正弦函数图象的应用 答案 C 解析 画。
8、14.2 正弦函数正弦函数、余弦函数的性质余弦函数的性质(一一) 一、选择题 1下列是定义在 R 上的四个函数图象的一部分,其中不是周期函数的是( ) 考点 正弦、余弦函数的周期性 题点 正弦、余弦函数的周期性 答案 D 解析 对于 D,x(1,1)时的图象与其他区间图象不同,不是周期函数 2下列说法中正确的是( ) A当 x 2时,sin x 6 sin x,所以 6不是 f(x)si。
9、14.2 正弦函数正弦函数、余弦函数的性质余弦函数的性质(二二) 一、选择题 1符合以下三个条件: 在 0, 2 上单调递减; 以 2 为周期; 是奇函数 这样的函数是( ) Aysin x Bysin x Cycos x Dycos x 考点 正弦、余弦函数性质的综合应用 题点 正弦、余弦函数性质的综合应用 答案 B 解析 在 0, 2 上单调递减,可以排除 A,是奇函数可以排除 C,D。