1、第 2 课时 利用内错角或同旁内角探索两直线平行的条件知识点 1 内错角与同旁内角1如图 7117,直线 AB,CD 被直线 EF 所截,因为1 与2 在直线AB, CD_,在直线 EF 的_,所以1 与2 是_角;因为1 与3在直线 AB,CD_,在直线 EF 的_,所以1 与3 是_角图 71172.2018江都区一模如图 71 18,直线 a,b 被 c 所截,则 1 与2 是( )图 7118A同位角 B内错角 C同旁内角 D邻补角3如图 7119,在1,2,3,4 中,内错角是( )图 7119A1 与4 B2 与4C1 与3 D2 与33.如图 7120 所示,图 7120(1)1
2、 和3 是直线_,_被直线_ 所截而形成的_;(2)1 和4 是直线_,_被直线_ 所截而形成的_;(3)2 和3 是直线_,_被直线_ 所截而形成的_5如图 7121,A 的同旁内角是_图 7121知识点 2 利用内错角或同旁内角判定两直线平行62018郴州如图 7122,直线 a,b 被直线 c 所截,下列条件中,不能判定 ab的是( )图 7122A24 B14180C54 D137. 教材习题 7.1 第 6 题变式如图 7123,四边形 ABCD 中,点 E 在 BC 的延长线上,则下列条件中不能判定 ABCD 的是( )图 7123A34B12C5ABCD13D1808如图 712
3、4,小明利用两块相同的三角尺分别在三角尺的边缘画直线 AB 和CD,并由此判定 ABCD,这是根据_,两直线平行图 71249根据图 7125,回答下列问题(1)若2D ,则_ ,根据是_;(2)若B1180 ,则_,根据是_ 图 712510如图 7126,一个弯形管道 ABCD 的拐角ABC130,当BCD_时,可判定 ABCD,理由是_图 712611如图 7127,BC,AD 交于点 O,AAOB, D DOC,试判断 AB 与CD 的位置关系,并说明理由图 7127【能力提升】122018泰兴期末如图 71 28,由已知条件推出的结论,正确的是( )图 7128A由15,推出 ADB
4、CB由48,推出 ABCD C由26,推出 ABCDD由BADADC180,推出 ADBC13如图 7129 所示,直线 a,b 与直线 c 相交,给出下列条件:12;36;47180;57180.其中能判定 ab 的是( )图 7129A BC D14如图 7130,三块相同的三角尺(三个角的度数分别为 30,60 ,90)拼成一个图形(1)B,C,D 三点_(填 “在”或“不在”)一条直线上,理由是_;(2)图中的平行线有_ 图 713015如图 7131,已知AED60 ,EDB30,EF 平分AED,由此可以判定EF BD 吗?为什么?图 713116如图 7132,已知直线 AB,C
5、D 被直线 EF 所截,EG 平分AEF,FG 平分EFC, 1290,AB 与 CD 平行吗?为什么?图 713217如图 7133,已知EAC90,1290,13,24.(1)DE 与 BC 平行吗?试说明理由;(2)若将图形改变为图,其他条件不变,DE 与 BC 平行吗?试说明理由图 7133教师详解详析1之间 两侧 内错 之间 同旁 同旁内2B3D 解析 根据内错角的定义,2 与3 是内错角,故选 D.4(1)AB BC AC 同旁内角(2)AB CD AC 内错角(3)AD BC AC 内错角5B 和C 6D 解析 由24 或14180或54,可得 ab;由13,不能得到 ab.7B
6、 解析 由34,可得 ABCD, 故 A 能判定;由12,得 ADBC,故 B 不能判定 ABCD;由 5ABC,得 ABCD,故 C 能判定;由13D180,得 ABCD,故 D 能判定8内错角相等9(1)AD BC 内错角相等,两直线平行(2)ABCD 同旁内角互补,两直线平行解析 2 和D 是直线 AD,BC 被直线 DC 所截得的内错角;B 和1 是直线AB, DC 被直线 BC 所截得的同旁内角1050 同旁内角互补,两直线平行解析 当BCD50时,ABCD.理由:由ABC130,BCD50,可得ABCBCD180,所以 ABCD(同旁内角互补,两直线平行)11解:ABCD.理由如下
7、:因为AAOB ,DDOC(已知) ,又AOBDOC( 对顶角相等 ),所以AD(等量代换), 所以 ABCD(内错角相等,两直线平行 )点评 本题运用转化思想,关键是结合图中的对顶角相等把已知条件转化为内错角相等,从而得到平行线12B 解析 A由15,推出 ABCD ,故 A 错误;B. 由48,推出AB CD,故 B 正确;C.由26,推出 ADBC ,故 C 错误;D.由BADADC 180,推出 ABCD,故 D 错误13C14(1)在 平角的定义(2)ABEC,ACED,AE BD15解:可以判定 EFBD .理由如下:因为AED60,EF 平分AED ,所以FED30.又因为EDB
8、30,所以EDBFED ,所以 EFBD (内错角相等,两直线平行 )16解:ABCD.理由如下:因为 EG 平分AEF,FG 平分EFC (已知),所以AEF 21,EFC 22(角平分线的定义),所以AEF EFC2(12)(等式的性质) 因为1290(已知),所以AEF EFC180 ,所以 ABCD(同旁内角互补,两直线平行 )17解:(1)DEBC.理由:因为1290,EAC90,所以12EAC180,所以点 D,A,B 在同一条直线上因为13,24,所以13242(12) 180.因为DB13 24360,所以DB180,所以 DEBC .(2)DE BC.理由:如图,连接 EC.因为13,24,且1290,所以341290.因为EAC90,所以AECACE1809090,所以AECACE34180 ,所以 DEBC.