【BSD版春季课程初一数学】第6讲:完全平方公式-教案(学生版)

上传人:hua****011 文档编号:160435 上传时间:2020-11-07 格式:DOCX 页数:9 大小:144.15KB
下载 相关 举报
【BSD版春季课程初一数学】第6讲:完全平方公式-教案(学生版)_第1页
第1页 / 共9页
【BSD版春季课程初一数学】第6讲:完全平方公式-教案(学生版)_第2页
第2页 / 共9页
【BSD版春季课程初一数学】第6讲:完全平方公式-教案(学生版)_第3页
第3页 / 共9页
【BSD版春季课程初一数学】第6讲:完全平方公式-教案(学生版)_第4页
第4页 / 共9页
【BSD版春季课程初一数学】第6讲:完全平方公式-教案(学生版)_第5页
第5页 / 共9页
点击查看更多>>
资源描述

1、 完全平方公式 第6讲 适用学科 初中数学 适用年级 初中一年级 适用区域 北师版区域 课时时长(分钟) 120 知识点 1.完全平方公式; 2.配方法的应用; 3.利用完全平方公式的计算; 4.规律探究。 教学目标 1、体会公式的发现和推导过程,了解公式的几何背景,理解公式的本质,会应用公式进 行简单的计算; 2、通过让学生经历探索完全平方公式的过程,培养学生观察、发现、归纳、概括、猜想 等探究创新能力,发展推理能力和有条理的表达能力.培养学生的数形结合能力; 3、体验数学活动充满着探索性和创造性,并在数学活动中获得成功的体验与喜悦,树立 学习自信心。 教学重点 1、对公式的理解,包括它的推

2、导过程、结构特点、语言表述、几何解释; 2、会运用公式进行简单的计算。 教学难点 1、完全平方公式的推导及其几何解释; 2、完全平方公式的结构特点及其应用。 【教学建议】【教学建议】 本节的教学重点是完全平方公式的推导及应用,通过整式乘法的运算法则引导学生自主探索完全平方 公式,使学生从根本上理解公式的由来,掌握完全平方公式的结构特征,并且可以结合图形面积问题对公 式进行验证。在能够对完全平方公式能够熟练灵活运用的基础上,再去解决简便运算、规律探究等实际应 用问题。 学生学习本节时可能会在以下四个方面感到困难: 1.完全平方公式的推导及公式结构特征。 2.完全平方公式的图形验证。 3.与完全平

3、方公式有关的计算问题。 4.利用完全平方公式进行简便运算和规律探索。 【知识导图】【知识导图】 概述 【教学建议】【教学建议】 结合整式乘法的运算法则让学生自主推导探索完全平方公式,使其更深入理解公式的结构特征,更要能够 区别两个完全平方公式的异同之处,可以套用口诀来加深学生记忆。 对于完全平方公式的应用要在学生能够完全理解并灵活运用两个公式的基础上,逐步深入讲解各类应用问 题,比如简便计算的常用方法,公式的逆应用及规律探索问题。 1. 完全平方公式:两数和(或差)的平方等于这两数的平方和加上(或减去)这两数积的2倍; (a + b)2= a2+ 2ab + b2 (a b)2= a2 2ab

4、 + b2 口诀:首平方,尾平方,首尾二倍放中央; 2.完全平方公式的逆应用; 3.完全平方公式的图形验证。 完全平方公式 公式的结构特征 计算问题 规律探究问题 知识点 1 完全平方公式 二、知识讲解 一、导入 教学过程 1.简便计算; 2.配方法 3.规律探究。 【题干】计算:(2a b)2; (3x y)2 【题干】【题干】如果9x2+ kx + 25是一个完全平方式,那么 k 的值是( ) A、30 B、30 C、15 D、15 【题干】【题干】计算: (1)99992 ; (2) (a + b c)2。 【题干】【题干】先化简,再求值:,其中 3 1 a,3b 【题干】【题干】已知x

5、2+ y26x + 10y + 34 = 0,求x + y的值。 【教学建议】【教学建议】 在讲解过程中,教师可以根让学生从探索简单题目着手,引导学生逐步去发现理解公式的各种应用,掌握 完全平方公式的结构特征和公式之间的转化,从而去解决实际问题。尤其要注意两个完全平方公式及平方 差公式之间的转化计算问题,需要学生对两种公式完全掌握,所以在教学过程中要根据学生接受程度从易 到难逐步学习。 222 2)()(bababba 四 、课堂运用 例题 5 例题 4 例题 3 例题 2 例题 1 三、例题精析 知识点 2 完全平方公式的应用 1. 计算: 10022 100 99 + 992= _。 2.

6、 计算: 2 22 _abab; 2 22 _abab; 2 2_abab; 22 2_abab; 22 _abab; 22 _.abab 3. 若把代数式 2 23xx化为的形式,其中 m,k 为常数,结果为( ) A 2 (1)4x B 2 (1)2x C 2 (1)4x D 2 (1)2x 4. 先化简,再求值(m2n)(m + 2n),其中m = 1 2 ,n = 1 1.有一道题: “化简求值:,其中” 小明在解题时错错 误地把“”抄成了“” ,但显示计算的结果是正确的,你能解释一下,这是怎么回事吗? 2. 已知 = 6,求x2+ 的值。 3. 观察下列各式及其展开式: (a + b

7、) 2=a2+2ab+b2 (a + b) 3=a3+3a2b+3ab2+b3 (a + b) 4=a4+4a3b+6a2b2+4ab3+b4 (a + b) 5=a5+5a4b+10a3b2+10a2b3+5ab4+b5 请你猜想(a + b) 10的展开式第三项的系数是( ) A.36 B.45 C.55 D.66 1. 已知20 8 3 xa,18 8 3 xb,16 8 3 xc,求:代数式bcacabcba 222 的值 2. 如图所示,用 1 个边长为 c 的小正方形和直角边长分别为 a,b 的 4 个直角三角形,恰好能拼成一个新 2 xmk 2 ()mn-+ 2 (21)(21)

8、(2)aaa4(1)a(2)a 2a 2a2a 拔高 巩固 基础 的大正方形,其中 a,b,c 满足等式 c 2=a2+b2,由此可验证的乘法公式是() A.a2+ 2ab + b2= (a + b) 2 B. a2 2ab + b2= (a b) 2 C.(a + b) (a b) = a2b2 D. a2+ b2= (a + b) 2 3. 观察下列等式: 13+1=2 2 35+1=4 2 57+1=6 2 (1)请你按照上述三个等式的规律写出第个、第个等式; (2)请猜想,第 n 个等式(n 为正整数)应表示为 ; (3)证明你猜想的结论。 4. 先阅读下面的内容,再解决问题, 例题:

9、若 m 2+2mn+2n26n+9=0,求 m 和 n 的值 解:m 2+2mn+2n26n+9=0 m 2+2mn+n2+n26n+9=0 (m+n) 2+(n3)2=0 m+n=0,n3=0 m=3,n=3 (1)若x2+ 2y2 2xy + 4y2+ 4 = 0,求 xy的值 (2)已知整数 a、b 满足a2+ b2= 6a + 8b 25,且c = 2a 3b,求 c 的值 1完全平方公式: (a + b) 2 = a2+ 2ab + b2 (a b)2 = a2 2ab + b2; 2.完全平方公式的转换: a2+ b2= (a + b)2 2ab; 课堂小结 a2+ b2= (a

10、b)2+ 2ab; 2ab = (a + b)2 (a2+ b2); 2ab = (a2+ b2) (a b)2; (a + b)2= (a b)2+ 4ab; (a b)2= (a + b)2 4ab; 3. 配方法的应用; 4. 图形面积法验证整式乘法公式; 5. 探究规律问题。 1.计算: (1)(3m 2n)2 ; (2) (2x y)2 2. 已知 x y 2 ,求 22 )5()yxyxyx(的值。 3.已知a + b = 5,ab = 2,求下列各式的值: a2+ b2 (a b)2 1. 计算: (2a + b + 1)(2a b 1); (99 2) 2 2. 试说明不论 x

11、,y 取何值,代数式x2+ y2+ 6x 4y + 15的值总是正数。 3. 如图是 1 个直角三角形和 2 个小正方形, 直角三角形的三条边长分别是 a、 b、 c, 其中 a、 b 是直角边 正 方形的边长分别是 a、b (1)将 4 个完全一样的直角三角形和 2 个小正方形构成一个大正方形(如图) 用两种不同的方法列代 数式表示图中的大正方形面积: 方法一: ; 方法二: ; (2)观察图,试写出 2 )(ba, 2 a,2ab, 2 b这四个代数式之间的等量关系; (3)请利用(2)中等量关系解决问题: 已知图中一个三角形面积是 6,图的大正方形面积是 49,求 2 a+ 2 b的值

12、(4)利用你发现的结论,求: 22 39976997的值 巩固 基础 扩展延伸 1.如图(1)是一个长为 2m,宽为 2n(mn)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四 块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是( ) A B C D 2. 阅读下列材料: “a 20”这个结论在数学中非常有用,有时我们需要将代数式配成完全平方式例如: x 24x5x24x41(x2)21,(x2)20,(x2)211,x24x51试利用 “配方法”解决下列问题: (1)填空:x 24x5(x )2 ; (2)已知 x 24xy22y50,求 xy 的值

13、; (3)比较代数式:x 21 与 2x3 的大小。 3.先仔细阅读材料,再尝试解决问题: 完全平方公式 x 22xy+y2=(xy)2 及(xy) 2 的值恒为非负数的特点在数学学习中有着广泛的应用,比 如探求多项式 2x 2+12x4 的最大(小)值时,我们可以这样处理: 解:原式=2(x 2+6x2) =2(x 2+6x+992) =2(x+3) 211 =2(x+3) 222 因为无论 x 取什么数,都有(x+3) 2的值为非负数 2 )(nm 2 )(mmmn2 22 nm 拔高 所以(x+3) 2的最小值为 0,此时 x=3 进而 2(x+3) 222 的最小值是 2022=22 所以当 x=3 时,原多项式的最小值是22 解决问题: 请根据上面的解题思路,探求多项式 3x 26x+12 的最小值是多少,并写出对应的 x 的取值

展开阅读全文
相关资源
相关搜索
资源标签

当前位置:首页 > 初中 > 初中数学 > 培训复习班资料 > 初一下