浙江专用2020版高考数学大一轮复习 第四章三角函数解三角形 第8讲 正弦定理和余弦定理的应用举例练习(含解析)

上传人:可** 文档编号:107349 上传时间:2019-12-13 格式:DOCX 页数:10 大小:237.42KB
下载 相关 举报
浙江专用2020版高考数学大一轮复习 第四章三角函数解三角形 第8讲 正弦定理和余弦定理的应用举例练习(含解析)_第1页
第1页 / 共10页
浙江专用2020版高考数学大一轮复习 第四章三角函数解三角形 第8讲 正弦定理和余弦定理的应用举例练习(含解析)_第2页
第2页 / 共10页
浙江专用2020版高考数学大一轮复习 第四章三角函数解三角形 第8讲 正弦定理和余弦定理的应用举例练习(含解析)_第3页
第3页 / 共10页
浙江专用2020版高考数学大一轮复习 第四章三角函数解三角形 第8讲 正弦定理和余弦定理的应用举例练习(含解析)_第4页
第4页 / 共10页
浙江专用2020版高考数学大一轮复习 第四章三角函数解三角形 第8讲 正弦定理和余弦定理的应用举例练习(含解析)_第5页
第5页 / 共10页
点击查看更多>>
资源描述

1、第8讲 正弦定理和余弦定理的应用举例基础达标1.两座灯塔A和B与海岸观察站C的距离相等,灯塔A在观察站南偏西40,灯塔B在观察站南偏东60,则灯塔A在灯塔B的()A北偏东10B北偏西10C南偏东80D南偏西80解析:选D.由条件及题图可知,AB40,又BCD60,所以CBD30,所以DBA10,因此灯塔A在灯塔B南偏西80.2. 如图,在塔底D的正西方A处测得塔顶的仰角为45,在它的南偏东60的B处测得塔顶的仰角为30,AB的距离是84 m,则塔高CD为()A24 mB12 mC12 mD36 m解析:选C.设塔高CDx m,则ADx m,DBx m在ABD中,利用余弦定理,得842x2(x)

2、22x2cos 150,解得x12(负值舍去),故塔高为12 m.3一船自西向东匀速航行,上午10时到达一座灯塔P的南偏西75,距灯塔68海里的M处,下午2时到达这座灯塔的东南方向N处,则该船航行的速度为()A海里/小时B34海里/小时C海里/小时D34海里/小时解析:选C.如图所示,在PMN中,PM68,PNM45,PMN15,MPN120,由正弦定理,得,所以MN34,所以该船的航行速度为海里/小时4. 如图,两座相距60 m的建筑物AB,CD的高度分别为20 m、50 m,BD为水平面,则从建筑物AB的顶端A看建筑物CD的张角为()A30B45C60D75解析:选B.依题意可得AD20(

3、m),AC30(m),又CD50(m),所以在ACD中,由余弦定理得cosCAD,又0CAD180,所以CAD45,所以从顶端A看建筑物CD的张角为45.5(2019杭州调研)据气象部门预报,在距离某码头正西方向400 km处的热带风暴中心正以20 km/h的速度向东北方向移动,距风暴中心300 km以内的地区为危险区,则该码头处于危险区内的时间为()A9 hB10 hC11 hD12 h解析:选B.记码头为点O,热带风暴中心的位置为点A,t小时后热带风暴到达B点位置,在OAB中,OA400,AB20t,OAB45,根据余弦定理得4002400t2220t4003002,即t220t1750,

4、解得105t105,所以所求时间为10510510(h),故选B.6(2019绍兴一中高三期中)以BC为底边的等腰三角形ABC中,AC边上的中线长为6,当ABC面积最大时,腰AB长为()A6B6C4D4解析:选D.如图所示,设D为AC的中点,由余弦定理得cos A,在ABD中,BD2b22b,可得2a2b2144,设BC边上的高为h,所以Sahaa ,所以,当a232时,S有最大值,此时,b21442a280,解得b4,即腰长AB4.故选D.7如图,为了测量A,C两点间的距离,选取同一平面上B,D两点,测出四边形ABCD各边的长度(单位:km):AB5,BC8,CD3,DA5,且B与D互补,则

5、AC的长为_km.解析:由余弦定理得8252285cos(D)AC23252235cos D,解得cos D,所以AC7.答案:78(2019嘉兴高三模拟) 如图所示,位于东海某岛的雷达观测站 A,发现其北偏东45,与观测站A距离20海里的B处有一货船正匀速直线行驶,半小时后,又测得该货船位于观测站A东偏北(045)的C处,且cos .已知A、C两处的距离为10海里,则该货船的船速为_海里/小时解析:因为cos ,0BC10,cos 60(ABAC)21003ABAC,而ABAC,所以,解得ABAC20,故ABAC的取值范围为(10,20能力提升1. A,B是海面上位于东西方向相距5(3)海里

6、的两个观测点现位于A点北偏东45、B点北偏西60的D点有一艘轮船发出求救信号,位于B点南偏西60且与B点相距20海里的C点的救援船立即前往营救,其航行速度为30海里/小时,该救援船到达D点需要的时间为()A1小时B2小时C(1)小时D小时解析:选A.由题意知AB5(3)海里,DBA906030,DAB45,所以ADB105,在DAB中,由正弦定理得,所以DB10(海里),又DBCDBAABC30(9060)60,BC20海里,在DBC中,由余弦定理得CD2BD2BC22BDBCcos DBC3001 20021020900,所以CD30(海里),则需要的时间t1(小时)2. 如图,某住宅小区的

7、平面图呈圆心角为120的扇形AOB,C是该小区的一个出入口,且小区里有一条平行于AO的小路CD. 已知某人从O沿OD走到D用了2分钟,从D沿着DC走到C用了3分钟若此人步行的速度为每分钟50米,则该扇形的半径的长度为()A50 米B50 米C50米D50 米解析:选B.设该扇形的半径为r米,连接CO.由题意,得CD150(米),OD100(米),CDO60,在CDO中,CD2OD22CDODcos 60OC2,即150210022150100r2,解得r50 .3(2019瑞安四校联考)在ABC中,角A、B、C所对的边分别为a、b、c,且acos Bbcos Ac,当tan(AB)取最大值时,

8、角B的值为_解析:由acos Bbcos Ac及正弦定理,得sin Acos Bsin Bcos Asin Csin(AB)(sin Acos Bcos Asin B),整理得sin Acos B3cos Asin B,即tan A3tan B,易得tan A0,tan B0,所以tan(AB),当且仅当3tan B,即tan B时,tan(AB)取得最大值,所以B.答案:4如图,在四边形ABCD中,已知ADCD,AD10,AB14,BDA60,BCD135,则BC的长为_解析:在ABD中,设BDx,则BA2BD2AD22BDADcosBDA,即142x2102210xcos 60,整理得x2

9、10x960,解得x116,x26(舍去)在BCD中,由正弦定理:,所以BCsin 308.答案:85. 为了应对日益严重的气候问题,某气象仪器科研单位研究出一种新的“弹射型”气象仪器,这种仪器可以弹射到空中进行气象观测如图所示,A,B,C三地位于同一水平面上,这种仪器在C地进行弹射实验,观测点A,B两地相距100米,BAC60,在A地听到弹射声音的时间比B地晚秒在A地测得该仪器至最高点H处的仰角为30.(已知声音的传播速度为340米/秒)(1)求A,C两地的距离;(2)求这种仪器的垂直弹射高度HC.解:(1)设BCx,由条件可知ACx340x40,在ABC中,BC2AB2AC22ABACco

10、s BAC,即x21002(40x)22100(40x),解得x380,所以AC38040420米,故A,C两地的距离为420米(2)在ACH中,AC420,HAC30,AHC903060,由正弦定理,可得,即,所以HC140,故这种仪器的垂直弹射高度为140米6某港湾的平面示意图如图所示,O,A,B分别是海岸线l1,l2上的三个集镇,A位于O的正南方向6 km处,B位于O的北偏东60方向10 km处(1)求集镇A,B间的距离;(2)随着经济的发展,为缓解集镇O的交通压力,拟在海岸线l1,l2上分别修建码头M,N,开辟水上航线勘测时发现:以O为圆心,3 km为半径的扇形区域为浅水区,不适宜船只

11、航行请确定码头M,N的位置,使得M,N之间的直线航线最短解:(1)在ABO中,OA6,OB10,AOB120,根据余弦定理得AB2OA2OB22OAOBcos 120621022610196,所以AB14.故集镇A,B间的距离为14 km.(2)依题意得,直线MN必与圆O相切设切点为C,连接OC(图略),则OCMN.设OMx,ONy,MNc,在OMN中,由MNOCOMONsin 120,得3cxysin 120,即xy2c,由余弦定理,得c2x2y22xycos 120x2y2xy3xy,所以c26c,解得c6,当且仅当xy6时,c取得最小值6.所以码头M,N与集镇O的距离均为6 km时,M,N之间的直线航线最短,最短距离为6 km.10

展开阅读全文
相关资源
  • 浙江专用2020版高考数学大一轮复习 第八章立体几何与空间向量 第2讲 空间几何体的表面积与体积练习(含解析)浙江专用2020版高考数学大一轮复习 第八章立体几何与空间向量 第2讲 空间几何体的表面积与体积练习(含解析)
  • 浙江专用2020版高考数学大一轮复习 第八章立体几何与空间向量 第6讲 空间向量的运算及应用练习(含解析)浙江专用2020版高考数学大一轮复习 第八章立体几何与空间向量 第6讲 空间向量的运算及应用练习(含解析)
  • 浙江专用2020版高考数学大一轮复习 第八章立体几何与空间向量 第3讲 空间点直线平面之间的位置关系练习(含解析)浙江专用2020版高考数学大一轮复习 第八章立体几何与空间向量 第3讲 空间点直线平面之间的位置关系练习(含解析)
  • 浙江专用2020版高考数学大一轮复习 第八章立体几何与空间向量 第7讲 立体几何中的向量方法 第2课时空间距离与立体几何中的最值范围问题选用练习(含解析)浙江专用2020版高考数学大一轮复习 第八章立体几何与空间向量 第7讲 立体几何中的向量方法 第2课时空间距离与立体几何中的最值范围问题选用练习(含解析)
  • 浙江专用2020版高考数学大一轮复习 第二章函数概念与基本初等函数 第1讲 函数及其表示练习(含解析)浙江专用2020版高考数学大一轮复习 第二章函数概念与基本初等函数 第1讲 函数及其表示练习(含解析)
  • 浙江专用2020版高考数学大一轮复习 第八章立体几何与空间向量 第7讲 立体几何中的向量方法 第1课时空间角练习(含解析)浙江专用2020版高考数学大一轮复习 第八章立体几何与空间向量 第7讲 立体几何中的向量方法 第1课时空间角练习(含解析)
  • 浙江专用2020版高考数学大一轮复习 第二章函数概念与基本初等函数 第4讲 二次函数与幂函数练习(含解析)浙江专用2020版高考数学大一轮复习 第二章函数概念与基本初等函数 第4讲 二次函数与幂函数练习(含解析)
  • 浙江专用2020版高考数学大一轮复习 第二章函数概念与基本初等函数 第2讲 函数的单调性与最值练习(含解析)浙江专用2020版高考数学大一轮复习 第二章函数概念与基本初等函数 第2讲 函数的单调性与最值练习(含解析)
  • 浙江专用2020版高考数学大一轮复习 第二章函数概念与基本初等函数 第3讲 函数的奇偶性对称性练习(含解析)浙江专用2020版高考数学大一轮复习 第二章函数概念与基本初等函数 第3讲 函数的奇偶性对称性练习(含解析)
  • 浙江专用2020版高考数学大一轮复习 第九章平面解析几何 第4讲 直线与圆圆与圆的位置关系练习(含解析)浙江专用2020版高考数学大一轮复习 第九章平面解析几何 第4讲 直线与圆圆与圆的位置关系练习(含解析)
  • 相关搜索
    资源标签

    当前位置:首页 > 高中 > 高中数学 > 数学高考 > 一轮复习