特殊三角形三讲义同步练习学生版教师版

教师姓名 学生姓名 年 级 初一 上课时间 学 科 数学 课题名称 等腰三角形 知识模块:等腰三角形知识模块:等腰三角形 等腰三角形 C D A B 定 义 示例剖析 等腰三角形的定义:有两条边相等的三角 形叫做等腰三角形 如图,ABC是等腰三角形,ABAC 则AB、AC是该三角形的腰. BC是该三

特殊三角形三讲义同步练习学生版教师版Tag内容描述:

1、教师姓名 学生姓名 年 级 初一 上课时间 学 科 数学 课题名称 等腰三角形 知识模块:等腰三角形知识模块:等腰三角形 等腰三角形 C D A B 定 义 示例剖析 等腰三角形的定义:有两条边相等的三角 形叫做等腰三角形 如图,ABC是等腰三角形,ABAC 则AB、AC是该三角形的腰. BC是该三角形的底边. B、C是该三角形的底角, 且BC . A是该三角形的顶角. ABAC,BC 等腰三角形的性质: (1)两底角相等(等边对等角) (2) “三线合一” ,即顶角平分线、底 边上的中线、底边上的高相互重合 (3) 是轴对称图形,底边的垂直平分线 是它的对称轴 ABC。

2、教师姓名 冯娜娜 学生姓名 年 级 初一 上课时间 单击此处输 入日期。 学 科 数学 课题名称 等腰三角形 等腰三角形 (尚孔教研院彭高钢(尚孔教研院彭高钢知识模块:等腰三角形的概念知识模块:等腰三角形的概念 (1)等腰三角形:两条边相等的三角形叫等腰三角形; (2)相等的两条边叫做等腰三角形的腰;另一边叫做底边; (3)两腰的夹角叫顶角,腰和底边的夹角叫做底角. (尚孔教研院彭高钢(尚孔教研院彭高钢知识模块:知识模块:等腰三角形的性质等腰三角形的性质 (1)等腰三角形的两个底角相等.(简写成“等边对等角”) (2)等腰三。

3、教师姓名 学生姓名 年 级 初一 上课时间 学 科 数学 课题名称 等边三角形 等边三角形 定 义 示例剖析 等边三角形的定义:三条边都相等的三角 形叫做等边三角形 如图ABC 中,ABACBC,则ABC 是等边三角 形. 等边三角形的性质: 三边都相等,三个内角都相等,并且每一 个角都等于60 如图,ABC是等边三角形,则 60ABACBCABC , 等边三角形的判定: 三条边都相等的三角形是等边三角形 三个角都相等的三角形是等边三角形 有一个角是60的等腰三角形是等边三 角形 若ABACBC,则ABC是等边三角形 若ABC ,则ABC是等边三角形 若60ABACA ,(或60B,或。

4、 尚孔教育个性化辅导教案 尚孔教育个性化辅导 教学设计方案 尚孔教育培养孩子终生学习力 第1页 教师姓名 学生姓名 年 级 初一 上课时间 学 科 数学 课题名称 等腰三角形 等腰三角形 尚孔教育个性化辅导教案 尚孔教育个性化辅导 教学设计方案 第2页 尚孔教育培养孩子终生学习力 定 义 示例剖析 等腰三角形的定义:有两条边相等的三角 形叫做等腰三角形 如图,ABC是等腰三角形,ABAC 则AB、AC是该三角形的腰. BC是该三角形的底边. B、C是该三角形的底角, 且BC . A是该三角形的顶角. ABAC,BC 等腰三角形的性质: (1)两底角相等(等边对等。

5、教师姓名 学生姓名 年 级 初一 上课时间 学 科 数学 课题名称 三角形综合复习 知识模块:知识模块:全等三角形基本模型全等三角形基本模型 1 1、轴对称型全等三角形轴对称型全等三角形 把一个图形沿着某一条直线折叠过来,如果它能够与另一个图形重合,那么这两个图形关于这条直线对 称,下图是常见的轴对称型全等三角形。 三角形综合复习 E F B A D C 【例 1】 如图,在BAC的两边截取ABAC,又截取ADAE,连CD、BE交于F。 试说明:AF平分BAC。 【答案】联结BC,证明ABEACD(SAS) ,得到B=C 由ABAC得到ABC=ACB,所以得到FBC=FCB,即FC=FB 。

6、教师姓名 学生姓名 年 级 初一 上课时间 学 科 数学 课题名称 三角形综合复习 知识模块:知识模块:三角形三角形 1、三角形的三边关系:三角形中任意两边之和大于第三边; 三角形中任意两边之差小于第三边; 2、三角形的外角性质: (1)三角形的外角和等于360 三角形综合复习 (2)三角形的一个外角等于与它不相邻的两个内角的和 (3) 三角形的一个外角大于与它不相邻的任何一个内角 3、三角形具有稳定性 知识模块:全等三角形知识模块:全等三角形 1、 全等三角形的性质: (1)对应边相等; (2)对应角相等; 2、全等三角形的判定 SA。

7、 解三角形与平面向量 第9讲 9.1解三角形 知识结构图 知识梳理 在中, 分别表示的对边,有以下关系: 角与角关系:; 边与边关系:两边之和大于第三边,两边之差小于第三边; 边与角关系:正弦定理为外接圆半径; 余弦定理,; 面积公式: 经。

8、D C BA 4545 C B A A B C O M N 第第 3 讲讲 全等三角形的经典模型一全等三角形的经典模型一 等腰直角三角形数学模型思路: 利用特殊边特殊角证题ACBC 或904545,.如图 1; 常见辅助线为作高,利用三线合。

9、第4讲 全等三角形的经典模型二 题型一:手拉手模型 思路导航 手拉手数学模型: 例题精讲 引例 如图,等边三角形与等边三角形共点于,连接, 求证:并求出的度数. 解析 ABEAFC是等边三角形 AEAB,ACAF, 即 又 典题精练 例1 。

10、 第第 4 4 讲讲直角三角形直角三角形 一、解直角三角形一、解直角三角形 1直角三角形中的特殊线直角三角形中的特殊线: “直角三角形斜边中线 2 c d ” “直角三角形斜边高 ab h c ” 2特殊直角三角形特殊直角三角形的三边关系:的三边关系: “等腰直角三角形” “含30和60的直角三角形” 边的比:1 12 边的比:13 2 3基本图形(方法:作垂线构造含特殊角的直角三角形。

11、教师姓名 学生姓名 年 级 初二 上课时间 学 科 数学 课题名称 特殊三角形的存在性 知识模块:知识模块:存在全等三角形存在全等三角形 全等三角形的存在性问题考察了全等三角形的性质,利用边的关系结合两点间的距离公式构造等量关 系,主要的题型是求点的坐标 【例 1】如图,在平面直角坐标系中,直线8yx 与 x 轴、y 轴分别交于点 A,点 B,点 P(x,y)是 直线 AB 上一动点(点 P 不与点 A 重合) ,点 C 的坐标为(6,0),O 是坐标原点,设PCO 的面积为 S 特殊三角形的存在性 (1)求 S 与 x 之间的函数关系式; (2)当点 P 运动到什么位。

12、 1 第 17 讲 特殊三角形 【考点梳理】 1等腰三角形 (1)性质: 等腰三角形的两底角相等,两腰相等; 等腰三角形的_高线_、中线、顶角平分线“三线合一” ; 等腰三角形是轴对称图形,高线(或底边中线、顶角平分线)所在直线是它的对称轴 (2)判定: 有两角相等的三角形是等腰三角形; 有_两边相等的三角形是等腰三角形 2等边三角形 (1)性质:三边相等,三个内角都等于 60; 等边三角形是轴对。

13、教师姓名 学生姓名 年 级 初二 上课时间 学 科 数学 课题名称 特殊三角形的存在性 知识模块:知识模块:存在全等三角形存在全等三角形 全等三角形的存在性问题考察了全等三角形的性质,利用边的关系结合两点间的距离公式构造等量关 系,主要的题型是求点的坐标 【例 1】如图,在平面直角坐标系中,直线8yx 与 x 轴、y 轴分别交于点 A,点 B,点 P(x,y)是 直线 AB 上一动点(点 P 不与点 A 重合) ,点 C 的坐标为(6,0),O 是坐标原点,设PCO 的面积为 S 特殊三角形的存在性 (1)求 S 与 x 之间的函数关系式; (2)当点 P 运动到什么位。

14、第第 11 讲讲 特殊三角形之直角三角形特殊三角形之直角三角形 有一个角是直角的三角形叫做直角三角形, 这是初中阶段研究的一个特殊三角形, 它的性质 和判定是常考内容,也是解决初中几何问题的常用手段 一直角三角形 1. 直角三角形的性质: 。

15、三角形三角形(二)(二)讲义讲义 例题讲解一 1、如图,在四边形 ABCD 中,E 是 BC 的中点,连接 AC,AE,若 AB=AC,AE=CD,AD=CE,则图中 的全等三角形有( ) A0 对 B1 对 C2 对 D3 对 【变式】如图,把两根钢条 AA,BB的中点连在一起,可以做成一个测量内槽宽的卡钳,卡钳的工作原理利 用了三角形全等判定定理 2、如图,AD 是ABC 的中线,求证。

16、三角形三角形(一)(一)讲义讲义 例题讲解一 1 (1)如图,在ABC 中,B=40,C=80,ADBC 于 D,且 AE 平分BAC,求EAD 的度数 (2)上题中若B=40,C=80改为CB,其他条件不变,请你求出EAD 与B、C 之间的数列关 系?并说明理由 【变式 1】三角形中至少有一个角不小于_度 【变式 2】如图,ACBC,CDAB,图中有 对互余的角?有 对相等的。

17、三角形三角形(三)(三)讲义讲义 例题讲解一 1、如图,已知线段 a、b,求作一条线段使它等于 2a+b 【变式】已知线段 a、b、c,用直尺和圆规作出一条线段,使它等于 a+c-b 2、作图题(尺规作图,不写作法,但保留作图痕迹) 如图,已知,、 求作AOB,使AOB=+2 【变式】请把下面的直角进行三等分 (要求用尺规作图,不写作法,但要保留作图痕迹 ) 3、作图题(不写作图。

18、特殊特殊三角形三角形(二)(二)讲义讲义 例题讲解一 1、已知:如图,在ABC 中,A=30,ACB=90,M、D 分别为 AB、MB 的中点 求证:CDAB 【变式】在直角三角形中,有一个锐角是另一个锐角的 4 倍,求这个直角三角形各个角的度数 2、在 RtABC 中,C=90,CDAB,垂足为点 D (1)如果A=60,求证:BD=3AD; (2)如果 BD=3AD,求证:A=60 【。

19、特殊特殊三角形三角形(一)(一)讲义讲义 例题讲解一 1、下面四个手机应用图标中是轴对称图形的是( ) A B C D 【变式 1】下列图形中,对称轴最少的对称图形是 ( ) 【变式 2】在直线、角、线段、等边三角形四个图形中,对称轴最多的是 ,它有 条对称轴;最少 的是 ,它有 条对称轴 2、观察图形并判断照此规律从左到右第四个图形是( ) A . B. C . D. 【变式】将一。

20、特殊特殊三角形三角形(三)(三)讲义讲义 例题讲解一 1、如图,A=B=90,E 是 AB 上的一点,且 AE=BC,1=2 (1)RtADE 与 RtBEC 全等吗?并说明理由; (2)CDE 是不是直角三角形?并说明理由 2、已知:如图,DEAC,BFAC,ADBC,DEBF. 求证:ABDC. 3、如图 ABAC,BDAC 于 D,CEAB 于 E,BD、CE 相交于 F求证:AF 。

【特殊三角形三讲义同步练习】相关DOC文档
标签 > 特殊三角形三讲义同步练习学生版教师版[编号:118930]