第一章 解三角形,章末复习课,1.整合知识结构,梳理知识网络,进一步巩固、深化所学知识. 2.能灵活、熟练运用正弦、余弦定理解三角形 3.能解决三角形与三角变换的综合问题及实际问题.,学习目标,题型探究,知识梳理,内容索引,当堂训练,知识梳理,知识点一 正弦定理及其推论,设ABC的外接圆半径为R,则
人教B版高中数学必修三课件第三章概率章末复习课Tag内容描述:
1、第一章 解三角形,章末复习课,1.整合知识结构,梳理知识网络,进一步巩固、深化所学知识. 2.能灵活、熟练运用正弦、余弦定理解三角形 3.能解决三角形与三角变换的综合问题及实际问题.,学习目标,题型探究,知识梳理,内容索引,当堂训练,知识梳理,知识点一 正弦定理及其推论,设ABC的外接圆半径为R,则 (1) _. (2)a_,b_,c_. (3)sin A_,sin B_,sin C_. (4)在ABC中,AB_.,2R,2Rsin C,2Rsin A,2Rsin B,ab,sin Asin B,知识点二 余弦定理及其推论,1.a2_,b2_,c2_. 2.cos A_;cos B_;cos C_. 3.在ABC中,c2a2b2C为_。
2、章末复习,第三章 指数函数和对数函数,学习目标 1.构建知识网络. 2.进一步熟练指数、对数运算,加深对公式成立条件的记忆. 3.以函数观点综合理解指数函数、对数函数、幂函数.,知识梳理,达标检测,题型探究,内容索引,知识梳理,1.指数幂、对数式的运算、求值、化简、证明等问题主要依据指数幂、对数的运算性质,在进行指数、对数的运算时还要注意相互间的转化. 2.指数函数和对数函数的性质及图像特点是这部分知识的重点,而底数a的不同取值对函数的图像及性质的影响则是重中之重,要熟知a在(0,1)和(1,)两个区间取值时函数的单调性及图像特点.。
3、章末复习课,第三章 三角恒等变形,学习目标 1.进一步掌握三角恒等变换的方法. 2.会运用正弦、余弦、正切的两角和与差公式与二倍角公式.对三角函数式进行化简、求值和证明.,题型探究,知识梳理,内容索引,当堂训练,知识梳理,1.两角和与差的正弦、余弦、正切公式 cos() . cos() . sin() . sin() . tan() . tan() .,cos cos sin sin ,cos cos sin sin ,sin cos cos sin ,sin cos cos sin ,2.二倍角公式 sin 2。
4、第三章第三章 统计案例统计案例 章末复习章末复习 学习目标 1.会求回归直线方程, 并用回归直线进行预报.2.理解独立性检验的基本思想及实 施步骤 1最小二乘法 对于一组数据(xi,yi),i1,2,n,如果它们线性相关,则回归直线方程为y b xa ,其 中b i1 n xi x yi y i1 n xi x 2 i1 n xiyin x y i1 n x2in x 2 ,a y b。
5、章末复习课,第一章 算法初步,学习目标 1.加深对算法思想的理解. 2.加强用程序框图清晰条理地表达算法的能力. 3.进一步体会由自然语言到程序框图再到程序的逐渐精确的过程.,题型探究,知识梳理,内容索引,当堂训练,知识梳理,知识点一 算法、程序框图、程序语言,(1)算法的概念:算法可以理解为由基本运算及规定的运算顺序所构成的完整的解题步骤,或者看成按照要求设计好的 、 计算序列,并且这样的步骤或序列能够解决 . (2)程序框图:程序框图由 组成,按照 用_ 将程序框连接起来.结构可分为 结构、 结构和 结构. (3)算法语句:基本算法语句。
6、章末复习课,第三章 统计案例,学习目标 1.会求线性回归方程,并用回归直线进行预报. 2.理解独立性检验的基本思想及实施步骤.,题型探究,知识梳理,内容索引,当堂训练,知识梳理,1.最小二乘法,对于一组数据(xi,yi),i1,2,n,如果它们线性相关,则线性回归方程为 .,2.22列联表 22列联表如表所示:,ab,cd,ac,bd,其中n 为样本容量.,abcd,3.独立性检验 常用随机变量,K2 来检验两个变量是否有关系.,题型探究,例1 某城市理论预测2010年到2014年人口总数与年份的关系如表所示:,解答,类型一 线性回归分析,(1)请画出上表数据的散点图;,解 散点图如图。
7、章末复习课,第二章 统 计,学习目标 1.会根据不同的特点选择适当的抽样方法获得样本数据. 2.能利用图、表对样本数据进行整理分析,用样本和样本的数字特征估计总体. 3.能利用散点图对两个变量是否相关进行初步判断,能用回归直线方程进行预测,题型探究,知识梳理,内容索引,当堂训练,知识梳理,知识点一 抽样方法,1.当总体容量较小,样本容量也较小时,可采用 . 2.当总体容量较大,样本容量较小时,可用 . 3.当总体容量较大,样本容量也较大时,可用 . 4.当总体由差异明显的几部分组成时,可用 .,抽签法,随机数法,系统抽样法,分层抽样法,知识。
8、章末复习课,第三章 函数的应用,学习目标 1.体会函数与方程之间的联系,会用二分法求方程的近似解. 2.了解指数函数、幂函数、对数函数的增长差异. 3.巩固建立函数模型的过程和方法,了解函数模型的广泛应用.,题型探究,知识梳理,内容索引,当堂训练,知识梳理,1.知识网络,2.要点归纳 (1)函数的零点与方程的根的关系: 方程f(x)0有实数根函数yf(x)的图象与 有交点函数yf(x)有零点. 确定函数零点的个数有两个基本方法:借助函数 和_定理研究图象与x轴的交点个数;通过移项,变形转化成 个函数图象的交点个数进行判断.,x轴,单调性,零点存,在性,两。
9、章末复习课,第三章 三角恒等变换,学习目标 1.进一步掌握三角恒等变换的方法. 2.熟练应用正弦、余弦、正切的两角和与差公式与二倍角公式. 3.能对三角函数式进行化简、求值和证明,体会重要的数学思想方法.,题型探究,知识梳理,内容索引,当堂训练,知识梳理,1.两角和与差的正弦、余弦、正切公式 cos() . cos() . sin() . sin() .tan() .tan() .,cos cos sin sin ,cos cos sin sin ,sin cos cos sin ,sin cos cos sin ,2.二倍角公式 sin 2 . cos 2 .tan 2 .,2s。
10、章末复习,第三章 不等式,学习目标 1.整合知识结构,进一步巩固、深化所学知识. 2.能熟练利用不等式的性质比较大小、变形不等式、证明不等式. 3.体会“三个二次”之间的内在联系在解决问题中的作用. 4.能熟练地运用图解法解决线性规划问题. 5.会用均值不等式求解函数最值.,知识梳理,达标检测,题型探究,内容索引,知识梳理,1.“三个二次”之间的关系 所谓三个二次,指的是二次 图象及与x轴的交点;相应的一元二次 的实根;一元二次 的解集端点. 解决其中任何一个“二次”问题,要善于联想其余两个,并灵活转化. 2.均值不等式 利用均值不等式。
11、第三章 概率,章末复习课,学习目标 1.理解频率与概率的关系,会用随机模拟的方法用频率估计概率. 2.掌握随机事件的概率及其基本性质,能把较复杂的事件转化为较简单的互斥事件求概率. 3.能区分古典概型与几何概型,并能求相应概率.,题型探究,知识梳理,内容索引,当堂训练,知识梳理,1.频率与概率 频率是概率的 ,是随机的,随着试验的不同而 ;概率是多数次的试验中 的稳定值,是一个 ,不要用一次或少数次试验中的频率来估计概率. 2.求较复杂概率的常用方法 (1)将所求事件转化为彼此 的事件的和; (2)先求其 事件的概率,然后再应用公式P(A)。
12、章末复习课,第三章 概 率,学习目标 1.理解频率与概率的关系,会用随机模拟的方法用频率估计概率. 2.掌握随机事件的概率及其基本性质,能把较复杂的事件转化为较简单的互斥事件求概率. 3.能区分古典概型与几何概型,并能求相应概率.,题型探究,知识梳理,内容索引,当堂训练,知识梳理,1.频率与概率 频率是概率的 ,是随机的,随着试验的不同而 ;概率是多数次的试验中 的稳定值,是一个 ,不要用一次或少数次试验中的频率来估计概率. 2.求较复杂概率的常用方法 (1)将所求事件转化为彼此 的事件的和; (2)先求其 事件的概率,然后再应用公式P(A。