第一章第一章 空间向量与立体几何空间向量与立体几何 满分:150 分 时间:120 分钟 一单项选择题本题共 8 小题,每小题 5 分,共 40 分在每小题给出的四个选项中,只有一项是符合题目要求的 1空间直角坐标系中,点 A3,4,0与点,第八章第八章 立体几何初步立体几何初步 时间:120 分钟
人教B版高中数学必修二第一章 立体几何初步章末检测试卷含答案Tag内容描述:
1、第一章第一章 空间向量与立体几何空间向量与立体几何 满分:150 分 时间:120 分钟 一单项选择题本题共 8 小题,每小题 5 分,共 40 分在每小题给出的四个选项中,只有一项是符合题目要求的 1空间直角坐标系中,点 A3,4,0与点。
2、第八章第八章 立体几何初步立体几何初步 时间:120 分钟 满分:150 分 一单项选择题本题共 8 小题,每小题 5 分,共 40 分.在每小题给出的四个选项 中,只有一项是符合题目要求的 1.如图 RtOAB是一平面图形的直观图, 斜边。
3、章末检测试卷(二)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1若直线过点(1,2),(4,2),则此直线的倾斜角是()A30 B45 C60 D90答案A解析利用斜率公式ktan ,可得倾斜角为30.2已知0r1,则两圆x2y2r2与(x1)2(y1)22的位置关系是()A外切 B相交 C外离 D内含答案B解析设圆(x1)2(y1)22的圆心为O,则O(1,1)两圆的圆心距离d.显然有|r|r.所以两圆相交3若直线axby1与圆x2y21有公共点,则()Aa2b21 Ba2b21C.1 D.1答案B解析若直线axby1与圆x2y21有公共点,则1,即a2b21.4与直线3x4y50关于x轴对称的直线方程为()。
4、章末检测试卷(一)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1计算cos(780)的值是()A B C. D.答案C解析cos(780)cos 780cos(360260)cos 60,故选C.2设为第二象限角,则 等于()A1 Btan2 Ctan2 D1答案D解析为第二象限角,cos 0,sin 0,1.3若sin xtan x0,sin 0,则角的终边所在的象限是()A第一象限 B第二象限C第三象限 D第四象限。
5、章末检测卷(一)(时间:120分钟满分:150分)一、选择题(本大题共12个小题,每小题5分,共60分)1已知cos,(370,520),则等于()A390 B420 C450 D480答案B2sin的值等于()A. B C. D答案A解析sinsinsinsin.3.已知是第二象限角,则可化简为()A.sin cos B.sin cos C.2sin cos D.2sin cos 答案B解析|sin cos |,由于为第二象限角,所以|sin cos |sin cos ,故选B.4已知点P(tan,cos)在第三象限,则角的终边所在的象限为()A第一象限 B第二象限C第三象限 D第四象限。
6、章末检测(A)(时间:120 分钟 满分:150 分)一、选择题(本大题共 12 小题,每小题 5 分,共 60 分)1设集合 M1,2,4,8,Nx|x 是 2 的倍数,则 MN 等于( )A2,4 B1,2,4C2,4,8 D1,2,82若集合 Ax|x| 1,x R,B y|yx 2,xR ,则 AB 等于( )A x| 1x1 B x|x0Cx|0x1 D3若 f(x)ax 2 (a0),且 f( )2,则 a 等于( )2 2A1 B122 22C0 D24若函数 f(x)满足 f(3x2)9x8,则 f(x)的解析式是( )Af(x)9x8Bf(x)3x2Cf(x)3x4Df(x)3x2 或 f(x)3x45设全集 U1,2,。
7、第一章 章末检测(B)(时间:120 分钟 满分:150 分)一、选择题(本大题共 12 小题,每小题 5 分,共 60 分)1下图中的图形经过折叠不能围成棱柱的是( )2一个几何体的三视图如图所示,则这个几何体的体积等于( )A4 B6 C 8 D123下列说法不正确的是( )A圆柱的侧面展开图是一个矩形B圆锥的过轴的截面是一个等腰三角形C直角三角形绕它的一条边旋转一周形成的曲面围成的几何体是圆锥D圆台平行于底面的截面是圆面4水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示,如图所示,是一个正方体的表面展开图,若图中“2”在。
8、章末检测(B)(时间:120 分钟 满分:150 分)一、选择题(本大题共 12 小题,每小题 5 分,共 60 分)1若集合 A、B、C 满足 ABA,BCC ,则 A 与 C 之间的关系是( )AA C BC ACAC DCA2已知函数 y 的定义域为( )1 x2x2 3x 2A(,1B(,2C(, )( ,112 12D(, )( ,112 123设 P、Q 为两个非空实数集合,定义集合运算: P*Q z|zab( ab),aP,bQ ,若 P0,1,Q 2,3 ,则 P*Q 中元素之和是( )A0 B6C12 D184已知 a,b 为两个不相等的实数,集合 M a24a,1,Nb 24b1,2,映射 f:xx 表示把集合 M 中的元素 x 映射到集合 N 中仍为 x,则 ab 等于( )A1 B2C3 。
9、章末检测(一)一、选择题(本大题共12个小题,每小题5分,共60分)1.设m,n是两条不同的直线,、是三个不同的平面,给出下列四个命题:若m,n,则mn;若,m,则m;若m,n,则mn;若,则.其中正确命题的序号是()A. B.和 C.和 D.和解析正确;若,m,则m或m,错;若m,n,则mn,而同平行于同一个平面的两条直线有三种位置关系,错;垂直于同一个平面的两个平面也可以相交,错.答案A2.在如图所示的三棱锥ABCD中,VABPQ2,VCAPQ6,VCDPQ12,则VABCD=()A.20 B.24C.28 D.56解析由,得,所以VPBDQVPCDQ4,所以VABCD2612424.答案B3.如图,l,A、B,C,。
10、章末复习,第一章 立体几何初步,学习目标 1.整合知识结构,形成知识网络、深化所学知识. 2.会画几何体的直观图,并能计算几何体的表面积和体积. 3.熟练掌握线线、线面、面面间的平行与垂直关系,知识梳理,达标检测,题型探究,内容索引,知识梳理,1.空间几何体的结构特征 (1)棱柱:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边互相平行. 棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形. 棱台是棱锥被平行于底面的平面所截而成的. 这三种几何体都是多面体. (2)圆柱、圆锥、圆台、球是由平面图形矩形、直角三。
11、章末检测试卷(一)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.某空间几何体的主视图是三角形,则该几何体不可能是()A.圆柱 B.圆锥C.四面体 D.三棱柱答案A解析由空间几何体的三视图可知,圆柱的主视图不可能是三角形.2.如图,BCx轴,ACy轴,则下面直观图所表示的平面图形是()A.正三角形B.锐角三角形C.钝角三角形 D.直角三角形考点平面图形的直观图题点由直观图还原平面图形答案D解析因为BCx轴,ACy轴,所以直观图中BCx轴,ACy轴,所以三角形是直角三角形.故选D.3.已知直线l平面,直线m平面,下面四个结论:。
12、章末检测卷(一)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.观察图中四个几何体,其中判断正确的是()A.(1)是棱台B.(2)是圆台C.(3)是棱锥D.(4)不是棱柱答案C解析结合柱、锥、台、球的定义可知(3)是棱锥,(4)是棱柱,故选C.2.如图,OAB是水平放置的OAB的直观图,则OAB的面积为()A.6B.3C.6D.12答案D解析由斜二测画法规则可知,OAB为直角三角形,且两直角边长分别为4和6,故面积为12.3.设m,n是两条不同的直线,是两个不同的平面()A.若m,n,则mnB.若m,m,则C.若mn,m,则nD.若m,则m答案C解析A项,当m,n。
13、章末检测一、选择题1.在空间直角坐标系中,点A(3,4,0)与点B(2,1,6)的距离是()A.2B.2C.9D.答案D解析由空间直角坐标系中两点间距离公式得:|AB|.2.点A(2a,a1)在以点C(0,1)为圆心,半径为的圆上,则a的值为()A.1B.0或1C.1或D.或1答案D解析由题意,已知圆的方程为x2(y1)25,将点A的坐标代入圆的方程可得a1或a.3.已知直线l的方程为yx1,则直线l的倾斜角为()A.30B.45C.60D.135答案D解析由题意可知,直线l的斜率为1,故由tan1351,可知直线l的倾斜角为135.4.点(1,1)到直线xy10的距离为()A.1B.2C.D.答案C解析由点到直线的距离公式d.5.圆心在x轴。