全等三角形课时练

,苏科数学,1.3 探索三角形全等的条件(3),问题情境,1上节课你学会了哪种证明三角形全等的方法?,2判断三角形全等至少要有几个条件?,3请猜想,构成全等还有哪些条件组合 ?,1小明用纸板挡住了两个三角形的一部分,你能画出这两个三角形吗?每个人画出的三角形都一样吗?,建构活动,2请你用圆规和直尺画

全等三角形课时练Tag内容描述:

1、,苏科数学,1.3 探索三角形全等的条件(3),问题情境,1上节课你学会了哪种证明三角形全等的方法?,2判断三角形全等至少要有几个条件?,3请猜想,构成全等还有哪些条件组合 ?,1小明用纸板挡住了两个三角形的一部分,你能画出这两个三角形吗?每个人画出的三角形都一样吗?,建构活动,2请你用圆规和直尺画ABC, 使ABa,A,B (1)作ABa (2)在AB的同一侧分别作MAB, NBA ,AM、BN相交于点C (3)ABC就是所求作的三角形,建构活动,基本事实:两角及其夹边分别相等的两个三角形全等,数学概念,数学活动,例1 图中有几对全等三角形?你能找出它们。

2、,苏科数学,1.3 探索三角形全等的条件(1),问题情境,1操作:已知ABC,画一个与它全等的三角形, 说说你是如何画的?,1操作:如图,用一张长方形纸剪一个直角三角形, 怎样才能使全班同学剪下的直角三角形都全等?,建构活动,思考:我们确定了这个三角形的哪几个条件, 就保证了剪下的三角形全等?,2观察:下图中的三个三角形,哪两个三角形是全等三角形?,思考:ABC与PNM满足了什么条件时,它们全等? ABC为什么不与EDF全等?,3按下列作法,用直尺和圆规作ABC, 使A1,AB = a, AC = b 作MAN1 在射线AM、AN上分别作线段ABa,ACb 连接BC ABC。

3、直角三角形全等的条件(HL),回顾:,AB AC BC A B ACB,DE DF EF D DEFF,回 顾 与 练 习,1、除定义外判定两个三角形全等方法:, , , 。,SSS,ASA,AAS,SAS,2、如图,RtABC中, 直角边 、 ,斜边 。,BC,AC,AB,3、如图,ABBE于C,DEBE于E,请同学们加入适当的条件,使得两个三角形全等,如果两个直角三角形满足斜边和一条直角边对应相等,这两个直角三角形全等吗?,-,-,=,=,学习目标: 1、掌握直角三角形全等的判定方法斜边直角边; 2、熟练运用“HL”定理证明直角三角形全等; 3、能够运用“HL”定理解决有关问题.,做一做,用尺规作图法,做一。

4、,苏科数学,1.3 探索三角形全等的条件(5),问题情境,1回顾三角形全等的三个判定方法,2如图,AD平分BAC,要使ABDACD, (1)根据“SAS”需添加条件_; (2)根据“ASA”需添加条件_; (3)根据“AAS”需添加条件_,1如图,AB,12,EAEB, 你能证明ACBD吗?,建构活动,2如图,点C、F在AD上,且AFDC,BE, AD,你能证明ABDE吗?,建构活动,1. 为了利用“ASA”或“AAS”定理判定两个三角形全等,有时需要先把已知中的某个条件,转变为判定三角形全等的直接条件,数学概念,2证明两条线段相等或两个角相等可以通过证明它们所在的两个三角形全等而得。

5、全等三角形 聚焦考点温习理解1、全等三角形的对应边相等, 对应角相等2、全等三角形的判定方法有:(1)、三边分别相等的两个三角形全等,简写成边边边或 SSS(2)、两边和它们的夹角分别相等的两个三角形全等,简写成边角边或 SAS(3)、两角和它们的夹边分别相等的两个三角形全等,简写成角边角或 ASA(4)、两角和其中一个角的对边分别相等的两个三角形全等,简写成角角边或 AAS(5)、对于直角三角形,除了上述四种判定方法外,还有斜边和一条直角边分别相等的两个直角三角形全等,即简写为斜边直角边或 HL名师点睛典例分类考向一:全等三角形的。

6、第16课时 三角形与三角形全等(时间:45分钟)1(2018长沙中考)下列长度的三条线段,能组成三角形的是( B )A4 cm ,5 cm,9 cm B8 cm,8 cm,15 cmC5 cm, 5 cm,10 cm D 6 cm,7 cm,14 cm 来源 :Z,xx,k.Com2(2016贵港中考)在ABC中,若A95,B 40,则C的度数为( C )A35 B 40 C45 D503不一定在三角形内部的线段是( C )A三角形的角平分线 B三角形的中线C三角形的高 D三角形的中位线来源:学科网ZXXK4如图,在ABC中,已知A80,B 60,DEBC,那么CED的大小是( D )A40 B 60 C120 D140第4题图 第5题图5如图,点 E,F 。

7、2020年中考数学试题分类汇编之九 三角形 1、 选择题 3.(2020北京)如图,AB和CD相交于点O,则下列结论正确的是( ) A.1=2 B.2=3 C.14+5 D.25 【解析】由两直线相交,对顶角相等可知A正确;由三角形的一个外角等于它不相邻的两个内角的和可知B选项的23,C选项1=4+5,D选项的25.故选A. 4(2020广州)ABC中,点D,E分别是ABC的边AB,A。

8、第16课时 三角形与三角形全等百色中考命题规律与预测近五年中考考情 2019年中考预测年份 考查点 题型 题号 分值三角形的内角和 选择题 3来源:学科网ZXXK三角形的重心 选择题 52018全等三角形的判定与性质 解答题 22(1)10分2017 全等三角形的判定与性质 解答题 22(2) 4分三角形的内角和 选择题 12016全等三角形的判定与性质、三角形的内角和 解答题 22 9分三角形的稳定性 选择题 1三角形的三边关系、三角形高线 选择题 122015全等三角形的判定与性质 解答题 22(1)10分全等三角形的判定与性质 解答题 22(1)2014全等三角形的判定与性。

9、中考总复习:全等三角形巩固练习【巩固练习】一、选择题1如图,ABC是不等边三角形,DE=BC,以D、E为两个顶点画位置不同的三角形,使所画的三角形与ABC全等,这样的三角形最多可画出( ) .A.2个 B.4个 C.6个 D.8个2如图,RtABC中,BAC=90,AB=AC,D为AC的中点,AEBD交BC于E,若BDE=,ADB的大小是( )A B C D3如图,ABC中,C为钝角,CF为AB上的中线,BE为AC上的高,若CF=BE,则ACF的大小是( ).A45 B60 C30 D不确定4如图,ABC中,BAC=90 ADBC,AE平分BAC,B=2C,DAE的度数是( ) .A. 45 B. 20 C. 30 D.。

10、百色中考考题感知与试做,百色中考命题规律与预测,核心考点解读,典题精讲精练,百色中考考题感知与试做,百色中考命题规律与预测,核心考点解读,典题精讲精练,百色中考考题感知与试做,百色中考命题规律与预测,核心考点解读,典题精讲精练,百色中考考题感知与试做,百色中考命题规律与预测,核心考点解读,典题精讲精练,百色中考考题感知与试做,百色中考命题规律与预测,核心考点解读,典题精讲精练,百色中考考题感知与试做,百色中考命题规律与预测,核心考点解读,典题精讲精练,百色中考考题感知与试做,百色中考命题规律与预测,核心考点解读,典题精讲。

11、课时训练课时训练( (十八十八) ) 全等三角形全等三角形 (限时:30 分钟) |夯实基础| 1.2018 巴中 下列各图中 a,b,c 为三角形的边长,则甲、乙、丙三个三角形和左侧ABC 全等的是 ( ) 图 K18-1 A.甲和乙 B.乙和丙 C.甲和丙 D.只有丙 2.如图 K18-2,已知ABC=BAD,添加下列条件还不能判定ABCBAD 的是 ( ) 图 。

12、 1 第 14 讲 三角形与全等三角形 【考点导引】 1.了解三角形和全等三角形有关的概念,知道三角形的稳定性,掌握三角形的三边关系 2理解三角形内角和定理及推论 3理解三角形的角平分线、中线、高的概念及画法和性质 4掌握三角形全等的性质与判定,熟练掌握三角形全等的证明. 【难点突破】 1. 在判断已知三条线段是否能够组成三角形,关键是灵活而巧妙运用三角形三边关系,能够组成三角形, 必须满足下列。

13、13.3 全等三角形的判定全等三角形的判定 第第 3 课时课时 运用角边角 运用角边角 ASA及角角边 及角角边 AAS判判定三角形全等定三角形全等 学习目标:学习目标: 1探索并正确理解三角形全等的判定方法ASA和AAS 2会用三角形全等。

14、13.3 全等三角形的判定全等三角形的判定 第第 4 课时课时 具有特殊位置关系的三角形的全等具有特殊位置关系的三角形的全等 学习目标:学习目标: 1.复习并回顾全等三角形的判定方法.重点 2.根据平移或旋转证明两个三角形全等并掌握其规律.。

15、13.3 全等三角形的判定全等三角形的判定 第第 1 课时课时 运用边边边 运用边边边 SSS判定三角形全等判定三角形全等 学习目标:学习目标: 1.探索三角形全等条件.重点 2.掌握边边边SSS判定三角形全等的方法并能够应用.难点 3.理。

16、13.3 全等三角形的判定全等三角形的判定 第第 2 课时课时 运用边角边 运用边角边 SAS判定三角形全等判定三角形全等 学习目标:学习目标: 1.探索并正确理解三角形全等的判定方法SAS.重点 2.会用SAS判定方法证明两个三角形全等及。

17、 1 第 14 讲 三角形与全等三角形 【考点导引】 1.了解三角形和全等三角形有关的概念,知道三角形的稳定性,掌握三角形的三边关系 2理解三角形内角和定理及推论 3理解三角形的角平分线、中线、高的概念及画法和性质 4掌握三角形全等的性质与判定,熟练掌握三角形全等的证明. 【难点突破】 1. 在判断已知三条线段是否能够组成三角形,关键是灵活而巧妙运用三角形三边关系,能够组成三角形, 必须满足下列。

18、,苏科数学,1.2 全等三角形,问题情境,1观察:生活中能够完全重合的两个图形很多, 观察2个完全相同的信封你能找出其中的全等图形吗?,2思考:如图,将ABC沿直线BC平移得DEF; 将ABC沿BC翻折得到DBC; 将ABC旋转180得到AED,寻找上图中两三角形的对应元素, 它们的对应边有什么关系?对应角有什么关系?,数学概念,1全等三角形的概念: 能够完全重合的2个三角形是全等三角形,2 全等三角形的性质: 全等三角形的对应边,对应角相等.,用符号语言可以表述为: ABCDEF, AD,BE,CF, ABDE,BCEF,ACDF,例题讲解,1若ABCDEF, 写出这两个三角形的相。

19、第14课时 三角形与全等三角形,考点梳理,自主测试,考点一 三角形的有关概念 1.三角形:由不在同一条直线上的三条线段首尾顺次相接所组成的图形. 2.分类,考点梳理,自主测试,考点二 三角形的性质 1.三角形的三边关系:三角形任意两边的和大于第三边;任意两边的差小于第三边. 2.三角形的外角及其外角和 (1)外角:三角形的一边与另一边的延长线组成的角. (2)外角和:三角形的外角和是360. 3.三角形的内角和定理及推理 (1)三角形的内角和定理:三角形的内角和等于180. (2)推论:三角形的任何一个外角等于和它不相邻的两个内角的和;三角形的一个外角大。

20、,课时24 三角形与全等三角形,夯实基本 知已知彼,知识结构梳理,夯实基本 知已知彼,基础知识回顾 1. 三角形的概念与分类 (1)由三条线段_所围成的平面图形,叫做三角形 (2)三角形按边可分为:_三角形和_三角形;按角可分为_三角形、_三角形和_三角形 2. 三角形的性质 (1)三角形的内角和是_,三角形的外角等于与它_的两个内角的和,三角形的外角大于任何一个和它不相邻的内角 (2)三角形的两边之和_第三边,两边之差_第三边 3. 三角形中的重要线段 (1)角平分线:三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的_三角形的。

【全等三角形课时练】相关PPT文档
【全等三角形课时练】相关DOC文档
中考数学培优(含解析)之全等三角形
中考总复习:全等三角形--巩固练习
标签 > 全等三角形课时练[编号:188781]