全等三角形的判定教学课件共42张

人民教育出版社义务教育教科书八年级数学(上册),第十一章 三角形,11.2 与三角形有关的角,11.2.1 三角形的内角,三角形两边的夹角叫做三角形的内角,三角形的内角,红色的大三角形对蓝色的小三角形说:“我比你大,所以我的内角和肯定比你大。” 小三角形不服气地说:“不对不对,我的内角和和你的一样大

全等三角形的判定教学课件共42张Tag内容描述:

1、人民教育出版社义务教育教科书八年级数学(上册),第十一章 三角形,11.2 与三角形有关的角,11.2.1 三角形的内角,三角形两边的夹角叫做三角形的内角,三角形的内角,红色的大三角形对蓝色的小三角形说:“我比你大,所以我的内角和肯定比你大。” 小三角形不服气地说:“不对不对,我的内角和和你的一样大!”,三角形兄弟之争,三角形的三个内角和是多少?,把三个角拼在一起试试看?,你有什么办法可以验证呢?,从刚才拼角的过程你能想出证明的办法吗?,180,实践操作,F,2,1,E,C,B,A,三角形的内角和等于1800.,过A作EFBC,,B=2,(两直线平行,内错角相。

2、,第1章 直角三角形,1.1 直角三角形的性质和判定(),第1章 直角三角形,1.1 直角三角形的性质 和判定(),考场对接,例题1 如图1-1-14, 在 RtABC中, ACB=90, CD是 AB边上的高, 如果A=50, 则 DCB的度数为( ). A50 B45 C40 D25,题型一 利用直角三角形两锐角之间的关系求角度,考场对接,A,图1-1-14,锦囊妙计 直角三角形中的经典图形 在直角三角形中, 斜边上的高分直角所得的 两个锐角与原直角三角形的两个锐角之间存在 相等或互余的关系, 这是一个常见的基本图形, 在 解题中应用广泛. 如图1-1-15, B+A=90, A +ACD = 9 0, B =A C D . 同理 , A=BCD.,。

3、,第1章 直角三角形,1.2 直角三角形的性质和判定(),第1章 直角三角形,1.2 直角三角形的性质和判定(),考场对接,例题1 如图1-2-7所 示, 在ABC中, ADBC, 垂 足为D, B=60, C=45. (1)求BAC的度数; (2)若AC=2, 求AD的长.,题型一 利用勾股定理求边长,考场对接,解: (1)BAC=180-60-45=75. (2)ADBC, ADC是直角三角形. C=45, DAC=45, AD=DC. 在RtADC中, AD2 +DC2 =AC2 . AC=2, 2AD2 =4, AD2 =2, AD= .,锦囊妙计 特殊直角三角形三边的比例关系 (1)含30角的直角三角形(如图1-2-8)中, 三 边的比例关系为abc=1 2; (2)含45角的直角三角形 (如图1-2-9)中,。

4、,第1章 直角三角形,1.3 直角三角形全等的判定,第1章 直角三角形,1.3 直角三角形全等的判定,考场对接,例题1 如图1 - 3 - 6, A = B = 90, E是AB上一点, 且 AE=BC, 1=2, 那 么RtADE与 RtBEC全等吗?请说明理由.,题型一 直角三角形全等的判定,考场对接,解:全等. 理由如下: 1=2, DE=EC. A=B=90,AE=BC, RtADERtBEC(HL).,锦囊妙计 直角三角形全等的判定方法 直角三角形全等的判定方法最多, 共有 五种:SSS, SAS, ASA, AAS, HL. 其中前四 种是通法, 后一种是特法, 只适用于直角三 角形.,题型二 利用“HL”定理证明线段相等或角相等,例题2 如图1-。

5、11.1 与三角形有关的线段 11.1.2 三角形的高、中线与角平分线,人教版 数学 八年级 上册,当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,把一条线段分成两条相等的线段的点,一条射线把一个角分成两个相等的角,这条射线叫做这个角的平分线,复 习 回 顾,你还记得 “过一点画已知直线的垂线” 吗?,放、,靠、,过、,画.,过三。

6、12.2 三角形全等的判定,第一课时,第二课时,人教版 数学 八年级 上册,第三课时,第四课时,第一课时,“边边边”定理,为了庆祝国庆节,老师要求同学们回家制作三角形彩旗(如图),那么,老师应提供多少个数据,能保证同学们制作出来的三角形彩旗全等呢?一定要知道所有的边长和所有的角度吗?,3. 掌握用尺规作一个角等于已知角的作图法,1. 探索三角形全等条件,明确探索方向和过程.,2. 掌握“边边边”。

标签 > 全等三角形的判定教学课件共42张[编号:169725]