切线的判定

第2课时切线的判定与性质1掌握判定直线与圆相切的方法,并能运用直线与圆相切的方法进行计算与证明2掌握直线与圆相切的性质,并能运用直线与圆相切的性质进行计算与证明3能运用直线与圆的位置第2课时切线的判定知识点切线的判定1.如图29-3-15直线l上有ABCD四点以点P为圆心分别以线段PAPBPCPD的

切线的判定Tag内容描述:

1、*3.7 切线长定理,导入新课,讲授新课,当堂练习,课堂小结,第三章 圆,1.理解切线长的概念; 2.掌握切线长定理,初步学会运用切线长定理进行计算与证明.(重点),学习目标,问题1 通过前面的学习,我们了解到如何过圆上一点作已知圆的切线(如左图所示),如果点P是圆外一点,又怎么作该圆的切线呢? 问题2 过圆外一点P作圆的切线,可以作几条?请欣赏小颖同学的作法(如右下图所示)!,直径所对的圆周角是直角.,导入新课,1.切线长的定义: 经过圆外一点作圆的切线,这点和切点之间的线段的长叫作切线长,A,O,切线是直线,不能度量.,切线长是线。

2、,导入新课,讲授新课,当堂练习,课堂小结,24.4 直线与圆的位置关系,第3课时 切线长定理,第24章 圆,学习目标,1. 掌握切线长的定义及切线长定理.(重点) 2. 初步学会运用切线长定理进行计算与证明.(难点),导入新课,情境引入,同学们玩过空竹和悠悠球吗?在空竹和悠悠球的旋转的那一瞬间,你能从中抽象出什么样数学图形?,讲授新课,问题1 我们已经学习了如何过圆上一点作已知圆的切线. 那么,如果点P是圆外一点,又怎么作该圆的切线呢?,A,B,合作探究,你可以作几条?,作法:1. 连接OP. 2. 以OP为直径作圆,设此圆 交O于点A,B. 3. 连接PA,PB。

3、29.4 切线长定理*,导入新课,讲授新课,当堂练习,课堂小结,第二十九章 直线与圆的位置关系,1.掌握切线长定理,初步学会运用切线长定理进行计算与证明.(重点) 2.了解有关三角形的内切圆和三角形的内心的概念. 3.学会利用方程思想解决几何问题,体验数形结合思想.(难点),学习目标,导入新课,情境引入,同学们玩过空竹和悠悠球吗?在空竹和悠悠球的旋转的那一瞬间,你能从中抽象出什么样数学图形?,讲授新课,互动探究,问题1 上节课我们学习了过圆上一点作已知圆的切线(如左图所示),如果点P是圆外一点,又怎么作该圆的切线呢?过圆外的一点作。

4、直角三角形全等的条件(HL),回顾:,AB AC BC A B ACB,DE DF EF D DEFF,回 顾 与 练 习,1、除定义外判定两个三角形全等方法:, , , 。,SSS,ASA,AAS,SAS,2、如图,RtABC中, 直角边 、 ,斜边 。,BC,AC,AB,3、如图,ABBE于C,DEBE于E,请同学们加入适当的条件,使得两个三角形全等,如果两个直角三角形满足斜边和一条直角边对应相等,这两个直角三角形全等吗?,-,-,=,=,学习目标: 1、掌握直角三角形全等的判定方法斜边直角边; 2、熟练运用“HL”定理证明直角三角形全等; 3、能够运用“HL”定理解决有关问题.,做一做,用尺规作图法,做一。

5、提分专练(七) 切线的性质与判定 |类型 1| 切线的性质 1.2018 沈阳 如图 T7-1,BE 是O 的直径,点 A 和点 D 是O 上的两点,过点 A 作O 的切线交 BE 的延长线于点 C. 图 T7-1 (1)若ADE=25 ,求C 的度数; (2)若 AB=AC,CE=2,求O 半径的长. 2.2018 随州 如图 T7-2,AB 是O 的直径,点 C 为O 上一点,C。

6、 考纲要求考纲要求: 1掌握判定直线与圆相切的方法,并能运用直线与圆相切的方法进行计算与证明 2掌握直线与圆相切的性质,并能运用直线与圆相切的性质进行计算与证明 基础知识回顾基础知识回顾: 应用举例应用举例: 招数一、招数一、利用切线进行证明和计算。利用切线进行证明和计算。 【例【例 1】 如图,AB 为O 的直径,C 为O 上一点,AD 和过点 C 的切线互相垂直,垂足为 D,且交O 于点。

7、,导入新课,讲授新课,当堂练习,课堂小结,24.4 直线与圆的位置关系,第2课时 切线的性质和判定,第24章 圆,学习目标,1. 会判定一条直线是否是圆的切线,并会过圆上一点作圆的切线. 2. 理解并掌握圆的切线的性质定理及判定定理.(重点) 3. 能运用圆的切线的性质定理和判定定理解决问题. (难点),导入新课,情境引入,转动雨伞时飞出的雨滴,用砂轮磨刀时擦出的火花,都是沿着什么方向飞出的?,都是沿切线方向飞出的.,生活中常看到切线的实例,如何判断一条直线是否为圆的切线呢?学完这节课,你就都会明白.,如图,如果直线 l 是 O 的切线,点 A。

8、3.6 直线和圆的位置关系,导入新课,讲授新课,当堂练习,课堂小结,第三章 圆,第2课时 切线的判定及三角形的内切圆,1.理解并掌握圆的切线的判定定理及运用.(重点) 2.三角形的内切圆和内心的概念及性质.(难点),学习目标,砂轮上打磨工件时飞出的火星,下图中让你感受到了直线与圆的哪种位置关系?如何判断一条直线是否为切线呢?,导入新课,情境引入,讲授新课,问题1 如图,OA是O的半径, 经过OA 的外端点A, 作一条直线lOA,圆心O 到直线l 的距离是多少? 直线l 和O有怎样的位置关系?,合作探究,l,由圆的切线定义可知直线l 与圆O 相切.,l,过半。

9、2018-2019 学年度人教版数学九年级上册同步练习24.2.3 切线的判定和性质一选择题(共 15 小题)1如图,在以点 O 为圆心的两个同心圆中,大圆的弦 AB 与小圆相切,切点为C,若大圆的半径是 13,AB=24,则小圆的半径是( )A4 B5 C6 D72如图,AB、AC 、BD 是O 的切线,切点分别为 P、C 、D ,若 AB=5,AC=3,则 BD 的长是( )A1.5 B2 C2.5 D33如图,O 中,CD 是切线,切点是 D,直线 CO 交O 于 B、A ,A=20,则C 的度数是( )A25 B65 C50 D754如图,直线 AB 与O 相切于点 A,O 的半径为 1,若OBA=30,则 OB长为( )A1 B2 C D25如图,NAM=。

10、 27.2.3 第 1 课时 切线的判定与性质知识点 1 切线的判定1(1)如图 27225,O 的半径 OB5 cm,点 A,B 在直线 l 上,且 OA13 cm,则只要 AB_cm ,就可判定直线 l 是O 的切线;(2)如图,已知点 B 在O 上,直线 l 经过点 B,只要补充条件_,就可判定直线 l 是O 的切线;(3)如图,MN 是O 的直径,l 1 是O 的切线,切点为 N,l 2 过点 M,只要再补充条件_或_,就可判定直线 l2 是O 的切线图 272252如图 27226,ABC 的一边 AB 是O 的直径,请你添加一个条件,使 BC 所在的直线是O 的切线,你所添加的条件为 _图 272263下列直线中,一定是圆的切线。

11、25.2 第 1 课时 切线的判定知识点 1 切线的判定1下列直线中一定是圆的切线的是( )A与圆有公共点的直线B过半径外端点的直线C垂直于圆的半径的直线D过圆的半径的外端并且垂直于这条半径的直线2如图 254,A 是O 上一点,AO5,PO13,AP12,则 PA 与O 的位置关系是( )图 254A相交 B相切 C相离 D无法确定3如图 255,ABC 的一边 AB 是O 的直径,请你添加一个条件,使 BC 是O 的切线,你所添加的条件为 _图 2554如图 256,在ABC 中,ABAC,B30,以点 A 为圆心,以 3 cm 为半径作A,当 AB_ cm 时,BC 与A 相切图 2565如图 257,A,B 是O 上的两点,。

12、24.2 直线和圆的位置关系,第2课时 切线的判定与性质,导入新课,讲授新课,当堂练习,课堂小结,学习目标,1.会判定一条直线是否是圆的切线并会过圆上一点作圆的切线. 2.理解并掌握圆的切线的判定定理及性质定理.(重点) 3.能运用圆的切线的判定定理和性质定理解决问题.(难点),导入新课,情境引入,转动雨伞时飞出的雨滴,用砂轮磨刀时擦出的火花,都是沿着什么方向飞出的?,都是沿切线方向飞出的.,生活中常看到切线的实例,如何判断一条直线是否为切线呢?学完这节课,你就都会明白.,B,C,问题:已知圆O上一点A,怎样根据圆的切线定义过点A作圆。

13、24.2 直线和圆的位置关系,第2课时 切线的判定与性质,导入新课,情境引入,转动雨伞时飞出的雨滴,用砂轮磨刀时擦出的火花,都是沿着什么方向飞出的?,都是沿切线方向飞出的.,生活中常看到切线的实例,如何判断一条直线是否为切线呢?学完这节课,你就都会明白.,B,C,问题:已知圆O上一点A,怎样根据圆的切线定义过点A作圆O的切线?,观察:(1) 圆心O到直线AB的距离和圆的半径有什么数量关系? (2)二者位置有什么关系?为什么?,O,讲授新课,经过半径的外端并且垂直于这条半径的直线是圆的切线.,OA为O的半径,BC OA于A,BC为O的切线,B,C,O,要点。

14、3.6 直线和圆的位置关系直线和圆的位置关系 第第 2 课时课时 切线的判定及三角形的内切圆切线的判定及三角形的内切圆 1掌握切线的判定定理,并会运用它 进行切线的证明;(重点) 2能灵活选用切线的三种判定方法判 定一条直线是圆的切线;(难点) 3掌握画三角形内切圆的方法和三角 形内心的概念. (重点) 一、情境导入 下雨天,当你转动雨伞,你会发现雨伞 上的水珠顺着伞面的边缘飞出 仔细观察一 下, 水珠是顺着什么样的方向飞出的?这就 是我们所要研究的直线与圆相切的情况 二、合作探究 探究点一:切线的判定 【类型一】 已知直线过圆上。

15、3.6 直线和圆的位置关系,导入新课,讲授新课,当堂练习,课堂小结,第三章 圆,第2课时 切线的判定及三角形的内切圆,北师大版九年级下册数学教学课件,1.理解并掌握圆的切线的判定定理及运用.(重点) 2.三角形的内切圆和内心的概念及性质.(难点),学习目标,砂轮上打磨工件时飞出的火星,下图中让你感受到了直线与圆的哪种位置关系?如何判断一条直线是否为切线呢?,导入新课,情境引入,讲授新课,问题1 如图,OA是O的半径, 经过OA 的外端点A, 作一条直线lOA,圆心O 到直线l 的距离是多少? 直线l 和O有怎样的位置关系?,合作探究,l,由圆的切线。

16、专题专题 04 04 切线的判定与性质切线的判定与性质 一选择题 1下列说法中,正确的是( ) A圆的切线垂直于经过切点的半径 B垂直于切线的直线必经过切点 C垂直于切线的直线必经过圆心 D垂直于半径的直线是圆的切线 解:A、圆的切线垂直于经过切点的半径;故本选项正确; B、经过圆心且垂直于切线的直线必经过切点;故本选项错误; C、经过切点且垂直于切线的直线必经过圆心;故本选项错误; D、经过半径。

17、专题专题 04 04 切线的判定与性质切线的判定与性质 一选择题 1下列说法中,正确的是( ) A圆的切线垂直于经过切点的半径 B垂直于切线的直线必经过切点 C垂直于切线的直线必经过圆心 D垂直于半径的直线是圆的切线 解:A、圆的切线垂直于经过切点的半径;故本选项正确; B、经过圆心且垂直于切线的直线必经过切点;故本选项错误; C、经过切点且垂直于切线的直线必经过圆心;故本选项错误; D、经过半径。

18、第2课时切线的判定知识点切线的判定1.如图29-3-15,直线l上有A,B,C,D四点,以点P为圆心,分别以线段PA,PB,PC,PD的长为半径作圆,所得的圆与直线l相切的是()A.以PA的长为半径的圆B.以PB的长为半径的圆C.以PC的长为半径的圆D.以PD的长为半径的圆2.矩形的两邻边长分别为2.5和5,若以较长一边为直径作圆,则矩形与圆相切的边共有()A.4条 B.3条C.2条 D.1条3.在ABO中,OA=OB=2 cm,O的半径为1 cm,当AOB=时,直线AB与O相切.图29-3-15 图29-3-164.如图29-3-16,A,B是O上的两点,AC是过点A的一条直线.如果AOB=120,那么当CAB的度数为时,AC才能成为O的切线.5.如。

19、第 2 课时 切线的判定与性质1掌握判定直线与圆相切的方法,并能运用直线与圆相切的方法进行计算与证明2掌握直线与圆相切的性质,并能运用直线与圆相切的性质进行计算与证明3能运用直线与圆的位置关系解决实际问题一、情境导入约在 6000 年前,美索不达米亚人做出了世界上第一个轮子圆型的木盘,你能设计一个办法测量这个圆形物体的半径吗?二、合作探究探究点一:切线的判定【类型一】判定圆的切线如图,点 D 在 O 的直径 AB 的延长线上,点 C 在 O 上, AC CD, D30,求证: CD 是 O 的切线证明:连接 OC, AC CD, D30, A D30. OA OC,。

【切线的判定】相关PPT文档
【切线的判定】相关DOC文档
标签 > 切线的判定[编号:73328]