第一章 认识有机化合物,第一节 有机化合物的分类,超市,超市里有成千上万种商品,为什么你能够迅速挑出你所需要的饼干?,蔬菜,水果,粮油,零食,床上用品,一、按碳的骨架分类:,链状化合物,脂环化合物,环状化合物,芳香化合物,脂 肪 化 合 物,有机化合物,有机分子中碳和碳之间的连接呈链状,分子中含有碳
1.1菱形的判定第2课时课件Tag内容描述:
1、第一章 认识有机化合物,第一节 有机化合物的分类,超市,超市里有成千上万种商品,为什么你能够迅速挑出你所需要的饼干?,蔬菜,水果,粮油,零食,床上用品,一、按碳的骨架分类:,链状化合物,脂环化合物,环状化合物,芳香化合物,脂 肪 化 合 物,有机化合物,有机分子中碳和碳之间的连接呈链状,分子中含有碳环的有机化合物,分子中含有一个或多个 苯环的有机化合物,CH3,练习:按碳的骨架对下列化合物进行分类,官能团不同,二、按官能团分类,探究活动同学们闻乙醇和乙酸的气味,他们性质各不相同的原因是什么呢?,官能团,有机化合物中,决定化合物特殊。
2、24.2 直线和圆的位置关系,第2课时 切线的判定与性质,导入新课,情境引入,转动雨伞时飞出的雨滴,用砂轮磨刀时擦出的火花,都是沿着什么方向飞出的?,都是沿切线方向飞出的.,生活中常看到切线的实例,如何判断一条直线是否为切线呢?学完这节课,你就都会明白.,B,C,问题:已知圆O上一点A,怎样根据圆的切线定义过点A作圆O的切线?,观察:(1) 圆心O到直线AB的距离和圆的半径有什么数量关系? (2)二者位置有什么关系?为什么?,O,讲授新课,经过半径的外端并且垂直于这条半径的直线是圆的切线.,OA为O的半径,BC OA于A,BC为O的切线,B,C,O,要点。
3、第2课时,12.2 三角形全等的判定,1三角形全等的“边角边”的条件 2经历探索三角形全等条件的过程,体会利用操作、归纳获 得数学结论的过程 3掌握三角形全等的“SS”条件,了解三角形的稳定性 4能运用“SS”证明简单的三角形全等问题,还记得作一个角等于已知角的方法吗?,做一做:先任意画出ABC.再画一个ABC, 使AB=AB, AC=AC,A=A.(即有两边和它们 的夹角相等).把画好的ABC剪下,放到ABC上, 它们全等吗?,画法:,2. 在射线AM上截取AB=AB,3. 在射线AN上截取AC=AC,1. 画MAN=A,4. 连接BC,ABC就是所求的三角形.,三角形全等判定二: 两边和它们的夹。
4、10.2 平行线的判定,第10章 相交线、平行线与平移,导入新课,讲授新课,当堂练习,课堂小结,第2课时 平行线的判定方法,学习目标,1.掌握平行线的三种判定方法,会运用判定方法来判断两条 直线是否平行;(重点),2.能够根据平行线的判定方法进行简单的推理.,问题1 两条不重合的直线的位置关系有哪几种?,问题2 怎样的两条直线平行?,问题3 上节课你学了平行线的哪些内容?,相交(包括垂直)和平行两种.,在同一平面内,不相交的两条直线平行.,2.如果两条直线都与第三条直线平行,那么这两条直线互相平行.,1.经过直线外一点,有且只有一条直线与。
5、第1章 直角三角形,1.1 直角三角形的性质和判定(),第1课时 直角三角形的性质和判定,目标突破,总结反思,第1章 直角三角形,知识目标,第1课时 直角三角形的性质和判定,知识目标,1根据三角形内角和定理,结合直角三角形的一个内角是直角的特征,理解直角三角形两锐角互余的性质 2通过对三角形中角的认识,归纳出“有两个角互余的三角形是直角三角形”的结论,并运用此结论对三角形的形状进行判定 3通过实际测量,对比斜边上的中线、斜边的长度归纳出“直角三角形斜边上的中线等于斜边的一半”的性质,并能灵活应用此性质,目标突破,目标一 理解。
6、27.2.1 相似三角形的判定 第2课时,1.理解定理“平行于三角形一边的直线与其他两边(或延长线)相交,所构成的三角形与原三角形相似”,“三边对应成比例的两个三角形相似”; 2.培养学生与他人交流、合作的意识.,1. 对应角_, 对应边 的两个三角形, 叫做相似三角形 .,相等,的比相等,2.相似三角形的_, 各对应边 .,对应角相等,的比相等,3.如何识别两三角形是否相似?, DEBC, ADEABC.,平行于三角形一边的直线和其他两边(或两边的延长线) 相交,所构成的三角形与原三角形相似.,思考:有没有其他简单的办法判断两个三角形相似?,是否有ABCABC?,A,B。
7、第2课时 矩形的判定 新课导入 工人师傅在做门窗或矩形工人师傅在做门窗或矩形 零件时,要确保图形是矩形。零件时,要确保图形是矩形。 你有什么办法帮工人师傅测一你有什么办法帮工人师傅测一 测吗?测吗? 学习目标 1. 1.能推导归纳判定一个四边形是矩形的几能推导归纳判定一个四边形是矩形的几 种方法种方法. . 2. 2.能选取适当的判定方法判定一个四边形能选取适当的。
8、第2课时 集合的表示,第一章 1.1 集合的含义与表示,学习目标 1.了解空集、有限集、无限集的概念. 2.掌握用列举法表示有限集. 3.理解描述法的格式及其适用情形. 4.学会在不同的集合表示法中作出选择和转换.,题型探究,问题导学,内容索引,当堂训练,问题导学,思考,知识点一 集合的分类,集合xR|x20呢?,答案,答案 0个;1个;无限多个.,按集合中的元素个数分类,不含有任何元素的集合叫作空集,记作;含有有限个元素的集合叫有限集;含有无限个元素的集合叫无限集.,梳理,思考,知识点二 列举法,要研究集合,要在集合的基础上研究其他问题,首先要。
9、,导入新课,讲授新课,当堂练习,课堂小结,22.4 矩形,第二十二章 四边形,第2课时 矩形的判定,学习目标,1.经历矩形判定定理的猜想与证明过程,理解并掌握矩形的判定定理(重点) 2.能应用矩形的判定解决简单的证明题和计算题.(难点),复习引入,导入新课,问题1 矩形的定义是什么?,有一个角是直角的平行四边形叫做矩形.,问题2 矩形有哪些性质?,矩形,边:,角:,对角线:,对边平行且相等,四个角都是直角,对角线互相平分且相等,思考 工人师傅在做门窗或矩形零件时,如何确保图形是矩形呢?现在师傅带了两种工具(卷尺和量角器),他说用这两种工具。
10、19.3.1 矩形,第19章 四边形,导入新课,讲授新课,当堂练习,课堂小结,第2课时 矩形的判定,学习目标,1.经历矩形判定定理的猜想与证明过程,理解并掌握矩形的判定定理(重点) 2.能应用矩形的判定解决简单的证明题和计算题.(难点),复习引入,导入新课,问题1 矩形的定义是什么?,有一个角是直角的平行四边形叫做矩形.,问题2 矩形有哪些性质?,矩形,边:,角:,对角线:,对边平行且相等,四个角都是直角,对角线互相平分且相等,思考 工人师傅在做门窗或矩形零件时,如何确保图形是矩形呢?现在师傅带了两种工具(卷尺和量角器),他说用这两种工具的。
11、第2课时 两平面垂直的判定,第1章 1.2.4 平面与平面的位置关系,学习目标 1.了解二面角及其平面角的概念,能确定二面角的平面角. 2.初步掌握面面垂直的定义及两个平面垂直的判定定理.,问题导学,达标检测,题型探究,内容索引,问题导学,知识点一 二面角,思考1 观察教室内门与墙面,当门绕着门轴旋转时,门所在的平面与墙面所形成的角的大小和形状.数学上,用哪个概念来描述门所在的平面与墙面所在的平面所形成的角?,答案 二面角.,思考2 平时,我们常说“把门开大一点”,在这里指的是哪个角大一点?,答案 二面角的平面角.,梳理 (1)二面角的概。
12、第2课时 集合的表示,第一章 1.1 集合的含义及其表示,学习目标 1.掌握用列举法表示有限集. 2.理解描述法的格式及其适用情形. 3.学会在不同的集合表示法中作出选择和转换. 4.理解集合相等、有限集、无限集、空集等概念.,题型探究,问题导学,内容索引,当堂训练,问题导学,思考,知识点一 列举法,要研究集合,要在集合的基础上研究其他问题,首先要表示集合.而当集合中元素较少时,如何直观地表示集合?,答案,答案 把它们一一列举出来.,梳理,思考,知识点二 描述法,能用列举法表示所有大于1的实数吗?如果不能,又该怎样表示?,答案,答案 不能.表。
13、18.1平行四边形,18.1.2平行四边形的判定(第2课时),B,如图, 取两根等长木条AB、CD,将他们平行放置,在用两根木条BC、AD加固,得到的四边形ABCD是一个平行四边形吗?,大家齐动手,A,B,C,D,1,2,如图, 取两根等长木条AB、CD,将他们平行放置,在用两根木条BC、AD加固,得到的四边形ABCD是一个平行四边形吗?,连接AC, ABCD, 1=2,,又 AB=CD, AC=CA, ABCCDA, BC=AD,四边形ABCD有两组对边相等,是一个平行四边形,一组对边平行且相等的四边形是平行四边形,行家伸伸手,平行四边形的判别方法,ABCD,ADBC,ABCD,AB=CD,AB=CD,OA=OC,OB=OD,AD=BC,四边形。
14、9.4 矩形菱形正方形第 2 课时矩形的判定练习一、选择题1如图 K171,四边形 ABCD 的对角线互相平分,要使它成为矩形,那么需要添加的条件是( )图 K171A AB CD B AD BCC AB BC D AC BD2四边形 ABCD 的对角线 AC, BD 相交于点 O,下列不能判定它是矩形的条件是( )A AO CO, BO DO, AC BDB AB CD, AD BC, BAD90C ABC BCD ADCD AB CD, AB CD, AC BD3平面内一点到两条平行线的距离分别是 1 cm 和 3 cm,则这两条平行线间的距离为( )A1 cm B2 cmC3 cm D2 cm 或 4 cm图 K1724如图 K172,四边形 ABCD 为平行四边形,延长 AD 到点 E,使 DE AD。
15、1初中数学北师大版九年级上册第一章 特殊平行四边形第 3课时 菱形的性质与判定测试时间:25 分钟一、选择题1.如图,在平行四边形 ABCD中,AC 平分DAB,AB=2,则平行四边形 ABCD的周长为( ) A.4 B.6 C.8 D.12答案 C 如图,四边形 ABCD为平行四边形,ABCD, 2=3,AC 平分DAB, 1=2,1=3,AD=DC,平行四边形 ABCD为菱形,平行四边形 ABCD的周长=42=8.故选 C.2.如图,两张等宽的纸条随意交叉叠放在一起,转动其中一张,重合部分构成一个四边形,则下列结论中不一定成立的是( )A.ABC=ADC,BAD=BCD B.AB=BCC.AB=CD,AD=BC D.DAB+ BCD=180答案 D 四边形 ABCD是用两张。
16、1.2 矩形的性质与判定,第一章 特殊平行四边形,第2课时 矩形的判定,导入新课,讲授新课,当堂练习,课堂小结,1理解并掌握矩形的判定方法(重点) 2能应用矩形判定解决简单的证明题和计算题.(难点),学习目标,问题: 什么是矩形?矩形有哪些性质?,A,B,C,D,O,矩形:有一个角是直角的平行四边形. 矩形性质:是轴对称图形; 四个角都是直角;对角线相等且平分.,导入新课,活动1: 利用一个活动的平行四边形教具演示,拉动一对不相邻的顶点时, 注意观察两条对角线的长度.,问题1:我们会看到对角线会随着变化而变化,当两条对角线长度相等时,平行四边形有什。
17、19.3.2 菱形,第19章 四边形,导入新课,讲授新课,当堂练习,课堂小结,第1课时 菱形的判定,1.经历菱形判定定理的探究过程,掌握菱形的判定定理(重点)2.会用这些菱形的判定方法进行有关的证明和计算. (难点),一组邻边相等,有一组邻边相等的平行四边形叫做菱形,菱形的性质,菱形,两组对边平行,四条边相等,两组对角分别相等,邻角互补,两条对角线互相垂直平分 每一条对角线平分一组对角,边,角,对角线,复习引入,导入新课,问题 矩形的定义是什么?性质有哪些?,根据菱形的定义,可得菱形的第一个判定的方法:,AB=AD,,四边形ABCD是平行四边形,,四。
18、,导入新课,讲授新课,当堂练习,课堂小结,22.5 菱形,第二十二章 四边形,第2课时 菱形的判定,1.经历菱形判定定理的探究过程,掌握菱形的判定定理(重点)2.会用这些菱形的判定方法进行有关的证明和计算. (难点),一组邻边相等,有一组邻边相等的平行四边形叫做菱形,菱形的性质,菱形,两组对边平行,四条边相等,两组对角分别相等,邻角互补,两条对角线互相垂直平分 每一条对角线平分一组对角,边,角,对角线,复习引入,导入新课,问题 菱形的定义是什么?性质有哪些?,根据菱形的定义,可得菱形的第一个判定的方法:,AB=AD,,四边形ABCD是平行四边形,。
19、第一章 特殊平行四边形,北师版九年级上册,1.1 菱形的性质与判定,第1课时 菱形的性质,1.了解菱形的概念及其与平行四边形的关系; 2.探索并证明菱形的性质定理.(重点) 3.应用菱形的性质定理解决相关问题.(难点),学习目标,问题:什么样的四边形是平行四边形?它有哪些性质呢?,平行四边形的性质:,边:对边平行且相等. 对角线:相交并相互平分. 角:对角相等,邻角互补.,导入新课,活动: 观察下列图片, 找出你所熟悉的图形.,问题1: 观察上图中的这些平行四边形,你能发现它们有什么 样的共同特征?,平行四边形,菱形,菱形:有一组邻边相等的。
20、1.1 菱形的性质与判定,第一章 特殊平行四边形,第3课时 菱形的性质、判定与其他知识的综合,导入新课,讲授新课,当堂练习,课堂小结,1.能灵活运用菱形的性质定理及判定定理解决一些相关问题,并掌握菱形面积的求法。(重点、难点) 2.经历菱形性质定理及判定定理的应用过程,体会数形结合、转化等思想方法。,学习目标,1平行四边形的对边 ,对角 ,对角线 2菱形具有 的一切性质 3菱形是 图形也是 图形 4菱形的四条边都 5菱形的两条对角线互相 ,平行且相等,相等,互相平分,平行四边形,轴对称,中心对称,相等,垂直 且平分,复习引入,导入新课,6.平行四边。