尚孔教育个性化辅导教案 尚孔教育个性化辅导 教学设计方案 尚孔教育培养孩子终生学习力(尚孔教研院彭高钢(尚孔教研院彭高钢 第 1 页 教师姓名 学生姓名 年 (尚孔教研院彭高钢(尚孔教研院彭高钢级 初二 上课时间 学 (尚孔教研院彭高钢(尚孔教研院彭高钢(尚孔教研院彭高钢(尚孔教研院彭高钢科 数学
和二元二次方程组-学生版Tag内容描述:
1、 尚孔教育个性化辅导教案 尚孔教育个性化辅导 教学设计方案 尚孔教育培养孩子终生学习力(尚孔教研院彭高钢(尚孔教研院彭高钢 第 1 页 教师姓名 学生姓名 年 (尚孔教研院彭高钢(尚孔教研院彭高钢级 初二 上课时间 学 (尚孔教研院彭高钢(尚孔教研院彭高钢(尚孔教研院彭高钢(尚孔教研院彭高钢科 数学 课题名称 一元二次方程解法之开平方法和配方法一元二次方程解法之开平方法和配方法 待提升的知 识点/题型 1.掌握一元二次方程开平方法解法; 2.掌握一元二次方程配方法解法; (尚孔教研院彭高钢)(尚孔教研院彭高钢)知识梳理知识。
2、辅导讲义学员姓名: 学科教师:年 级: 辅导科目:授课日期时 间主 题无理方程与二元二次方程组学习目标1掌握解解无理方程的一般步骤,知道解无理方程必须验根,并掌握验根的方法;2会用“换元法”解特殊的无理方程;3掌握“代入法”和“因式分解法”解二元二次方程组成的方程组教学内容1已知下列关于的方程:(1);(2);(3);(4);(5);(6);其中无理方程是_(填序号)2 方程的根是_;参考答案:1(2)(3)(5); 2;3下列方程组中,二元二次方程组的是_(填序号).(1); (2); (3); (4)4把方程化成两个一次方程_ _。
3、教师姓名 冯娜娜 学生姓名 年 级 初二 上课时间 单击此处输 入日期。 学 科 数学 课题名称 二元二次方程(组) 二元二次方程(组) 知识模块:二元二次方程知识模块:二元二次方程 1、定义:仅含有两个未知数,并且含有未知数的项的最高次数是 2 的整式方程,叫做二元二次方程 2、对二元二次方程应从以下三方面理解 (1)二元二次方程是整式方程; (2)二元二次方程含有两个未知数; (3)含有未知数的项的最高次数是 2 3、二元二次方程的一般形式 二元二次方程的一般形式为 22 0axbxycydxeyf(a、b、c、d、e、f 是常数,且 a、b、c 中至。
4、辅导讲义学员姓名: 学科教师:年 级: 辅导科目:授课日期时 间主 题无理方程与二元二次方程组学习目标1掌握解解无理方程的一般步骤,知道解无理方程必须验根,并掌握验根的方法;2会用“换元法”解特殊的无理方程;3掌握“代入法”和“因式分解法”解二元二次方程组成的方程组教学内容1已知下列关于的方程:(1);(2);(3);(4);(5);(6);其中无理方程是_(填序号)2 方程的根是_;3下列方程组中,二元二次方程组的是_(填序号).(1); (2); (3); (4)4把方程化成两个一次方程_ _【知识梳。
5、教师姓名 冯娜娜 学生姓名 年 级 初二 上课时间 单击此处输 入日期。 学 科 数学 课题名称 二元二次方程(组) 二元二次方程(组) 知识模块:二元二次方程知识模块:二元二次方程 1、定义:仅含有两个未知数,并且含有未知数的项的最高次数是 2 的整式方程,叫做二元二次方程 2、对二元二次方程应从以下三方面理解 (1)二元二次方程是整式方程; (2)二元二次方程含有两个未知数; (3)含有未知数的项的最高次数是 2 3、二元二次方程的一般形式 二元二次方程的一般形式为 22 0axbxycydxeyf(a、b、c、d、e、f 是常数,且 a、b、c 中至。
6、教师姓名 学生姓名 年 级 初二 上课时间 学 科 数学 课题名称 二元二次方程组 知识模块:二元二次方程知识模块:二元二次方程 1、定义:仅含有两个未知数,并且含有未知数的项的最高次数是 2 的整式方程,叫做二元二次方程 2、二元二次方程的一般形式 二元二次方程的一般形式为 22 0axbxycydxeyf(a、b、c、d、e、f 是常数,且 a、b、c 二元二次方程组 中至少有一个不为零) ,其中 22 ,ax bxy cy为二次项,,dx ey为一次项,f 为常数项,a、b、c 为二次项 系数,d、e 为一次项系数 3、二元二次方程的解 能使二元二次方程左右两边的值相等。
7、教师姓名 学生姓名 年 级 初二 上课时间 学 科 数学 课题名称 无理方程和二元二次方程组 知识模块:无理方程的概念知识模块:无理方程的概念 (1)无理方程:方程中含有根式,且被开方数是含有未知数的代数式,这样的方程叫做无理方程,无 无理方程和二元二次方程 理方程也叫根式方程。 (2)有理方程:整式方程和分式方程统称为有理方程. (3)代数方程:有理方程和无理方程统称为代数方程. (4)无理方程、有理方程和代数方程三者的关系: 代数方程 无理方程 分式方程 整式方程 有理方程 【例 1】在方程(1)0xx, (2)120x (3) 2 32。
8、教师姓名 学生姓名 年 级 初二 上课时间 学 科 数学 课题名称 二元二次方程组 知识模块:二元二次方程知识模块:二元二次方程 1、定义:仅含有两个未知数,并且含有未知数的项的最高次数是 2 的整式方程,叫做二元二次方程 2、二元二次方程的一般形式 二元二次方程的一般形式为 22 0axbxycydxeyf(a、b、c、d、e、f 是常数,且 a、b、c 二元二次方程组 中至少有一个不为零) ,其中 22 ,ax bxy cy为二次项,,dx ey为一次项,f 为常数项,a、b、c 为二次项 系数,d、e 为一次项系数 3、二元二次方程的解 能使二元二次方程左右两边的值相等。
9、教师姓名 学生姓名 年 级 初二 上课时间 学 科 数学 课题名称 无理方程和二元二次方程组 知识模块:无理方程的概念知识模块:无理方程的概念 (1)无理方程:方程中含有根式,且被开方数是含有未知数的代数式,这样的方程叫做无理方程,无 无理方程和二元二次方程 理方程也叫根式方程。 (2)有理方程:整式方程和分式方程统称为有理方程. (3)代数方程:有理方程和无理方程统称为代数方程. (4)无理方程、有理方程和代数方程三者的关系: 代数方程 无理方程 分式方程 整式方程 有理方程 【例 1】在方程(1)0xx, (2)120x (3) 2 32。