第2课时二次函数y=a(x-h)2与y=a(x-h)2+k的图像和性质 知识点 1二次函数y=ax2+k的图像和性质 1.二次函数y=x2-1的图像是一条,它的开口方向,对称轴是,顶点坐标是,当x=时,函数y取得最值,可见函数y=x2-1的图像是由函数y=x2的图像向平移个单位长度得到的. 2.20
函数yAsinx的图像与性质二课时作业含答案Tag内容描述:
1、第2课时二次函数y=a(x-h)2与y=a(x-h)2+k的图像和性质知识点 1二次函数y=ax2+k的图像和性质1.二次函数y=x2-1的图像是一条,它的开口方向,对称轴是,顶点坐标是,当x=时,函数y取得最值,可见函数y=x2-1的图像是由函数y=x2的图像向平移个单位长度得到的.2.2018淮安 将二次函数y=x2-1的图像向上平移3个单位长度,得到的图像所对应的函数表达式是.3.抛物线y=ax2+c的顶点坐标是(0,2),且形状及开口方向与抛物线y=-12x2相同,则a,c的值分别为()A.-12,-2 B.-12,2C.12,2 D.12,-24.关于二次函数y=-2x2+3,下列说法中正确的是()A.图像的开口向上B.当x-1时,y随。
2、第二课时第二课时 函数函数y yA Asinsinxx 的图象与性质的应用的图象与性质的应用 基础达标 一选择题 1.已知函数 ysinx0,2的部分图象如图所示,则 A.1,6 B.1,6 C.2,6 D.2,6 解析 依题意得 T247。
3、第二课时第二课时 函数函数 yAsinx的图象与性质的应用的图象与性质的应用 一选择题 1.已知函数 ysinx0,2的部分图象如图所示,则 A.1,6 B.1,6 C.2,6 D.2,6 答案 D 解析 依题意得 T247123,所以 2。
4、第二课时第二课时 平面与平面垂直的性质平面与平面垂直的性质 基础达标 一选择题 1.已知平面 平面 ,则下列命题中真命题的个数是 内的任意直线必垂直于 内的无数条直线; 在 内垂直于 与 的交线的直线必垂直于 内的任意一条直线; 内的任意一。
5、第二课时第二课时 直线与平面垂直的性质直线与平面垂直的性质 基础达标 一选择题 1.若直线 a 与平面 不垂直,那么在平面 内与直线 a 垂直的直线 A.只有一条 B.有无数条 C.是平面内的所有直线 D.不存在 解析 当 a平面 时,在平。
6、第二课时第二课时 直线与平面平行的性质直线与平面平行的性质 基础达标 一选择题 1.如图, 已知 S 为四边形 ABCD 外一点, 点 G, H 分别为 SB, BD 上的点, 若 GH平面 SCD,则 A.GHSA B.GHSD C.GH。
7、第二课时第二课时 平面与平面平行的性质平面与平面平行的性质 基础达标 一选择题 1.两个平行平面与另两个平行平面相交所得四条直线的位置关系是 A.两两相互平行 B.两两相交于同一点 C.两两相交但不一定交于同一点 D.两两相互平行或交于同一。
8、3指数函数第1课时指数函数的图像与性质基础过关1指数函数yf(x)的图像经过点,那么f(4)f(2)()A8 B16 C32 D64解析设f(x)ax(a0且a1),由条件知f(2),故a2,a2,因此f(x)2x,f(4)f(2)242264.答案D2已知函数f(x)axb(a0,且a1)经过点(1,5),(0,4),则f(2)的值为()A7 B8 C12 D16解析由已知得解得f(x)3,f(2)3437.答案A3函数f(x)3x3(1x5)的值域是()A(0,) B(0,9)C. D.解析1x5,2x32,323x332,于是有f(x)9,即所求函数的值域为.答案C4指数函数y(2a)x在定义域内是减。